• Title/Summary/Keyword: nuclear factor ${\kappa}B$

Search Result 1,032, Processing Time 0.043 seconds

The Anti-inflammatory Mechanism of Xanthoangelol E is Through the Suppression of NF-${\kappa}B$/Caspase-1 Activation in LPS-stimulated Mouse Peritoneal Macrophage

  • Seoa, Jung-Ho;Kim, Su-Jin
    • Biomedical Science Letters
    • /
    • v.18 no.4
    • /
    • pp.345-354
    • /
    • 2012
  • Angelica keiskei has exhibited numerous pharmacological effects including antitumor, antimetastatic, and antidiabetic effects. However, the anti-inflammatory effects and mechanisms employed by xanthoangelol E isolated from Angelica keiskei are incompletely understood. In this study, we attempted to determine the effects of Xanthoangelol E on the lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophage. The findings of this study demonstrated that xanthoangelol E inhibited the production of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, and prostaglandin $E_2$ ($PGE_2$). Xanthoangelol E inhibited the enhanced levels of cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) caused by LPS. Additionally, we showed that the anti-inflammatory effect of xanthoangelol E is through the regulation of the activation of nuclear factor (NF)-${\kappa}B$ and caspase-1. These results provide novel insights into the pharmacological actions of xanthoangelol E as a potential candidate for the development of new drugs to treat inflammatory diseases.

Induction of nuclear factor-${\kappa}B$ activation through TAK1 and NIK by diesel exhaust particles in L2 cell lines

  • Yun, Young-Pil;Joo, Jin-Deok;Lee, Joo-Yong;Nam, Hae-Yun;Kim, Young-Hoon;Lee, Kweon-Haeng;Lim, Cheol-Soo;Kim, Hyung-Jung;Lim, Yong-Gul;Lim, Young
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2005.05a
    • /
    • pp.85-90
    • /
    • 2005
  • Diesel exhaust Particles (DEPs) are known to induce allergic responses in airway epithelial cells, such as the production of various cytokines via nuclear factor-kappa B ($NF-{\kappa}B$). However. the intracellular signal transduction pathways underlying this phenomenon have not been fully examined. This study showed that DEP induced $NF-{\kappa}B$ activity via transforming growth factor-${\beta}$ activated kinase 1 (TAK1) and $NF-{\kappa}B$-inducing kinase (NIK) in L2 rat lung epithelial cells. DEP induced the $NF-{\kappa}B$ dependent reporter activity approximately two-to three-fold in L2 cells. However, this effect was abolished by the expression of the dominant negative forms of TAK1 or NIK. Furthermore, it was shown that DEP induced TAK1 phosphorylation in the L2 cells. These results suggest that TAK1 and NIK are important mediators of DEP-induced $NF-{\kappa}B$ activation.

  • PDF

Atopic Dermatitis-Related Inflammation in Macrophages and Keratinocytes: The Inhibitory Effects of Bee Venom

  • Kim, Deok-Hyun;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.36 no.2
    • /
    • pp.80-87
    • /
    • 2019
  • Background: This study investigated the anti-inflammatory effects of bee venom (BV) through the inhibition of nuclear factor kappa beta ($NF-{\kappa}B$) expression in macrophages and keratinocytes. Methods: Cell viability assays were performed to investigate the cytotoxicity of BV in activated macrophages [lipopolysaccharide (LPS)] and keratinocytes [interferon-gamma/tumor necrosis factor-alpha ($IFN-{\gamma}/TNF-{\alpha}$)]. A luciferase assay was performed to investigate the cellular expression of $NF-{\kappa}B$ in relation to BV dose. The expression of $NF-{\kappa}B$ inhibitors ($p-I{\kappa}B{\alpha}$, $I{\kappa}B{\alpha}$, and p50 and p65) were determined by Western Blot analysis, and the electromobility shift assay. A nitrite quantification assay was performed to investigate the effect of BV, and $NF-{\kappa}B$ inhibitor on nitric oxide (NO) production in macrophages. In addition, Western Blot analysis was performed to investigate the effect of BV on the expression of mitogen-activated protein kinases (MAPK) in activated macrophages and keratinocytes. Results: BV was not cytotoxic to activated macrophages and keratinocytes. Transcriptional activity of $NF-{\kappa}B$, and p50, p65, and $p-I{\kappa}B{\alpha}$ expression was reduced by treatment with BV in activated macrophages and keratinocytes. Treatment with BV and an $NF-{\kappa}B$ inhibitor, reduced the production of NO by activated macrophages, and also reduced $NF-{\kappa}B$ transcriptional activity in activated keratinocytes (compared with either BV, or $NF-{\kappa}B$ inhibitor treatment). Furthermore, BV decreased p38, p-p38, JNK, and p-JNK expression in LPS-activated macrophages and $IFN-{\gamma}/TNF-{\alpha}$-activated keratinocytes. Conclusion: BV blocked the signaling pathway of $NF-{\kappa}B$, which plays an important role in the inflammatory response in macrophages and keratinocytes. These findings provided the possibility of BV in the treatment of atopic dermatitis.

Neuroprotection of Dexmedetomidine against Cerebral Ischemia-Reperfusion Injury in Rats: Involved in Inhibition of NF-κB and Inflammation Response

  • Wang, Lijun;Liu, Haiyan;Zhang, Ligong;Wang, Gongming;Zhang, Mengyuan;Yu, Yonghui
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.383-389
    • /
    • 2017
  • Dexmedetomidine is an ${\alpha}2$-adrenergic receptor agonist that exhibits a protective effect on ischemia-reperfusion injury of the heart, kidney, and other organs. In the present study, we examined the neuroprotective action and potential mechanisms of dexmedetomidine against ischemia-reperfusion induced cerebral injury. Transient focal cerebral ischemia-reperfusion injury was induced in Sprague-Dawley rats by middle cerebral artery occlusion. After the ischemic insult, animals then received intravenous dexmedetomidine of $1{\mu}g/kg$ load dose, followed by $0.05{\mu}g/kg/min$ infusion for 2 h. After 24 h of reperfusion, neurological function, brain edema, and the morphology of the hippocampal CA1 region were evaluated. The levels and mRNA expressions of interleukin-$1{\beta}$, interleukin-6 and tumor nevrosis factor-${\alpha}$ as well as the protein expression of inducible nitric oxide synthase, cyclooxygenase-2, nuclear factor-${\kappa}Bp65$, inhibitor of ${\kappa}B{\alpha}$ and phosphorylated of ${\kappa}B{\alpha}$ in hippocampus were assessed. We found that dexmedetomidine reduced focal cerebral ischemia-reperfusion injury in rats by inhibiting the expression and release of inflammatory cytokines and mediators. Inhibition of the nuclear factor-${\kappa}B$ pathway may be a mechanism underlying the neuroprotective action of dexmedetomidine against focal cerebral I/R injury.

Evidence of hydrolyzed traditional Korean red ginseng by malted barley on activation of receptor interacting proteins 2 and IkappaB kinase-beta in mouse peritoneal macrophages

  • Rim, Hong-Kun;Kim, Kyu-Yeob;Moon, Phil-Dong
    • CELLMED
    • /
    • v.2 no.3
    • /
    • pp.27.1-27.6
    • /
    • 2012
  • Red ginseng, which has a variety of biological and pharmacological activities including antioxidant, anti-inflammatory, antimutagenic and anticarcinogenic effects, has been used for thousands of years as a general tonic in traditional oriental medicine. Here, we tested the immune regulatory activities of hydrolyzed red ginseng by malted barley (HRG) on the expressions of receptor interacting proteins (Rip) 2 and $I{\kappa}B$ kinase-beta (IKK-${\beta}$) in mouse peritoneal macrophages. We show that HRG increased the activations of Rip 2 and IKK-${\beta}$ for the first time. When HRG was used in combination with recombinant interferon-${\gamma}$ (rIFN-${\gamma}$), there was a marked cooperative induction of nitric oxide (NO) production. The increased expression of inducible NO synthase from rIFN-${\gamma}$ plus HRG-stimulated cells was almost completely inhibited by pre-treatment with pyrrolidine dithiocarbamate (PDTC), an inhibitor of nuclear factor-${\kappa}B$ (NF-${\kappa}B$). In addition, the treatment of peritoneal macrophages with rIFN-${\gamma}$ plus HRG caused significant increases in tumor necrosis factor (TNF)-${\alpha}$ mRNA expression and production. Because NO and TNF-${\alpha}$ play an important role in the immune function and host defense, HRG treatment can modulate several aspects of the host defense mechanisms as a result of the stimulations of the inducible nitric oxide synthase and NF-${\kappa}B$. In conclusion, our findings demonstrate that HRG increases the productions of NO and TNF-${\alpha}$ from rIFN-${\gamma}$-primed macrophages and suggest that Rip2/IKK-${\beta}$ plays a critical role in mediating these immune regulatory effects of HRG.

Licochalcone B Exhibits Anti-inflammatory Effects via Modulation of NF-κB and AP-1

  • Kim, Jin-Kyung;Jun, Jong-Gab
    • Biomedical Science Letters
    • /
    • v.21 no.4
    • /
    • pp.218-226
    • /
    • 2015
  • The present study investigated the mechanisms of licochalcone B (LicB)-mediated inhibition of the inflammatory response in murine macrophages. RAW264.7 murine macrophages were cultured in the absence or presence of lipopolysacharide (LPS) with LicB. LicB suppressed the generation of nitric oxide and the pro-inflammatory cytokines interleukin (IL)-$1{\beta}$, IL-6 and tumor necrosis factor-${\alpha}$. LicB also inhibited the expression of mRNA for inducible nitric oxide synthase and pro-inflammatory cytokines induced by LPS. Moreover, LicB inhibited nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and activator protein-1 translocation into the nucleus in a dose-dependent manner. Thus, LicB mainly exerts its anti-inflammatory effects by inhibiting the LPS-induced NF-${\kappa}B$ and activator protein-1 signaling pathways in macrophages, which subsequently diminishes the expression and release of various inflammatory mediators. LicB shows promise as a therapeutic agent in inflammatory diseases.

Tumor Necrosis Factor-Alpha $(TNF-{\alpha})$ Induces PTEN Expression in HL-60 Cells (백혈병세포에서 종양괴사인자에 의한 PTEN 발현증가)

  • Lee Seung-Ho;Park Chul-Hong;Kim Byeong-Su
    • Journal of Food Hygiene and Safety
    • /
    • v.21 no.3
    • /
    • pp.181-188
    • /
    • 2006
  • Tumor necrosis factor-alpha $(TNF-{\alpha})$ plays a variety of biological functions such as apoptosis, inflammation and immunity. PTEN also has various cellular function including cell growth, proliferation, migration and differentiation. Thus, possible relationships between two molecules are suggested. $(TNF-{\alpha})$has been known to downregulate PTEN via nuclear factor-kappa $B(NF-{\kappa}B)$ pathway in the human colon cell line, HT-29. However, here we show the opposite finding that $(TNF-{\alpha})$ upregulates PTEN via activation of $NF-{\kappa}B$ in HL-60 cells. $TNF-{\alpha}$ increased PTEN expression at HL-60 cells in a time- and dose-dependent manner, but the response was abolished by disruption of $NF-{\kappa}B$ with p65 anisense oligonucleotide or pyrrolidine dithiocarbamate (PDTC). We found that $TNF-{\alpha}$ activated the $NF-{\kappa}B$ pathways, evidenced by the translocation of p65 to the nucleus in $TNF-{\alpha}-treated$ cells. We conclude that $TNF-{\alpha}$ induces upregulation of PTEN expression through $NF-{\kappa}B$ activation in HL-60 cells.

Anti-allergic Effect of Seungmagalgeun-tang through Suppression of NF-${\kappa}B$ and p38 Mitogen-Activated Protein Kinase Activation in the RBL-2H3 Cells

  • Lyu, Ji-Hyo;Lyu, Sun-Ae;Yoon, Hwa-Jung;Ko, Woo-Shin
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.6
    • /
    • pp.1572-1578
    • /
    • 2008
  • In previous report, Seungmagalgeun-tang (SGT) could exert its anti-inflammatory actions in the BV-2 microglial cells. However, study on the anti-inflammatory effect of SGT in mast cells has not been identified. Therefore, we examined on the anti-inflammatory effect of SGT on the phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187-induced rat basophilic leukemia (RBL-2H3) cells. SGT inhibited the release of ${\beta}$-hexosaminidase and secretion and expression of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-4 on RBL-2H3 cells, without affecting cell viability. The protein expression level of nuclear factor (NF)-${\kappa}B$ (p65) was decreased in the nucleus by SGT. In addition, SGT suppressed the degradation of inhibitory protein $I{\kappa}B-{\alpha}$ protein, the activation of p38 mitogen-activated protein kinase (MAPK), and the expressions of cyclooxygenase (COX)-2 mRNA and protein level in RBL-2H3 cells. These results suggest that SGT could be involved anti-allergic effect by control of NF-${\kappa}B$ (p65) translocation into the nucleus through inhibition of $I{\kappa}B-{\alpha}$ degradation and suppression of COX-2 expression.

Inhibitory Effect of Berberine on TNF-$\alpha$-induced U937 Monocytic Cell Adhesion to HT29 Human Colon Epithelial Cells is Mediated through NF-$\kappa$B Rather than PPAR$\gamma$ (TNF-$\alpha$ 자극에 의한 U937 단핵구 세포의 HT29 대장 상피 세포 부착에 대한 Berberine의 PPAR$\gamma$가 아닌 NF-$\kappa$B 경로를 통한 억제 효과)

  • Park, Su-Young;Lee, Gwang-Ik;Kim, Il-Yeob;Kim, Jung-Ae
    • YAKHAK HOEJI
    • /
    • v.54 no.2
    • /
    • pp.91-96
    • /
    • 2010
  • Berberine, an isoquinoline alkaloid, has a wide range of pharmacological effects, including anti-inflammation. It has been reported that berberine inhibits experimental colitis through inhibition of IL-8, and that inhibitory effect of berberine on inflammatory cytokine expression is mediated through peroxisome proliferator activated receptor (PPAR)-$\gamma$. In this study, we examined the effects and action mechanism of berberine on the tumor necrosis factor (TNF)-$\alpha$-induced monocyte adhesion to HT29 human colonic epithelial cells, which is commonly used as an in vitro model of inflammatory bowel disease (IBD). Berberine significantly inhibited the TNF-$\alpha$-induced monocyte adhesion to HT29, which is similar to the effect of PDTC, a nuclear factor (NF)-$\kappa$B inhibitor. However, ciglitazone and GW, the ligands of PPAR-$\gamma$, did not suppress the TNF-$\alpha$-induced monocyte adhesion to HT29 cells. In addition, TNF-$\alpha$-induced chemokine expression and NF-$\kappa$B transcriptional activity were significantly inhibited by berberine in a concentration-dependent manner. The results suggest that inhibitory effect of berberine on colitis is mediated through suppression of NF-$\kappa$B and NF-$\kappa$B-dependent chemokine expression.

Signal Transduction Pathways: Targets for Green and Black Tea Polyphenols

  • Bode, Ann M.;Dong, Zigang
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.66-77
    • /
    • 2003
  • Tea is one of the most popular beverages consumed in the world and has been demonstrated to have anti-cancer activity in animal models. Research findings suggest that the polyphenolic compounds, (-)-epigallocatechin-3-gallate, found primarily in green tea, and theaflavin-3,3'-digallate, a major component of black tea, are the two most effective anti-cancer factors found in tea. Several mechanisms to explain the chemopreventive effects of tea have been presented but others and we suggest that tea components target specific cell-signaling pathways responsible for regulating cellular proliferation or apoptosis. These pathways include signal transduction pathways leading to activator protein-1 (AP-1) and/or nuclear factor kappa B(NF-${\kappa}B$ ). AP-1 and NF-${\kappa}B$ are transcription factors that are known to be extremely important in tumor promoter-induced cell transformation and tumor promotion, and both are influenced differentially by the MAP kinase pathways. The purpose of this brief review is to present recent research data from other and our laboratory focusing on the tea-induced cellular signal transduction events associated with the MAP kinase, AP-1, and NF-${\kappa}B$ pathways.