• 제목/요약/키워드: nuclear equipment

검색결과 751건 처리시간 0.025초

Safety assessment of generation III nuclear power plant buildings subjected to commercial aircraft crash part III: Engine missile impacting SC plate

  • Xu, Z.Y.;Wu, H.;Liu, X.;Qu, Y.G.;Li, Z.C.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.417-428
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part III, the local damage of the rigid components of aircraft, e.g., engine and landing gear, impacting the steel concrete (SC) structures of NPP containment is mainly discussed. Two typical SC target panels with the thicknesses of 40 mm and 100 mm, as well as the steel cylindrical projectile with a mass of 2.15 kg and a diameter of 80 mm are fabricated. By using a large-caliber air gas gun, both the projectile penetration and perforation test are conducted, in which the striking velocities were ranged from 96 m/s to 157 m/s. The bulging velocity and the maximal deflection of rear steel plate, as well as penetration depth of projectile are derived, and the local deformation and failure modes of SC panels are assessed experimentally. Then, the commercial finite element program LS-DYNA is utilized to perform the numerical simulations, by comparisons with the experimental and simulated projectile impact process and SC panel damage, the numerical algorithm, constitutive models and the corresponding parameters are verified. The present work can provide helpful references for the evaluation of the local impact resistance of NPP buildings against the aircraft engine.

Safety assessment of Generation III nuclear power plant buildings subjected to commercial aircraft crash Part I: FE model establishment and validations

  • Liu, X.;Wu, H.;Qu, Y.G.;Xu, Z.Y.;Sheng, J.H.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.381-396
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part I, finite element (FE) models establishment and validations for both the aircrafts and NPP buildings are performed. (i) Airbus A320 and A380 aircrafts are selected as the representative medium and large commercial aircrafts, and the corresponding fine FE models including the skin, beam, fuel and etc. are established. By comparing the numerically derived impact force time-histories with the existing published literatures, the rationality of aircrafts models is verified. (ii) Fine FE model of the Chinese Zhejiang Sanao NPP buildings is established, including the detailed structures and reinforcing arrangement of both the containment and auxiliary buildings. (iii) By numerically reproducing the existing 1/7.5 scaled aircraft model impact tests on steel plate reinforced concrete (SC) panels and assessing the impact process and velocity time-history of aircraft model, as well as the damage and the maximum deflection of SC panels, the applicability of the existing three concrete constitutive models (i.e., K&C, Winfrith and CSC) are evaluated and the superiority of Winfrith model for SC panels under deformable missile impact is verified. The present work can provide beneficial reference for the integral aircraft crash analyses and structural damage assessment in the following two parts of this paper.

A simple data assimilation method to improve atmospheric dispersion based on Lagrangian puff model

  • Li, Ke;Chen, Weihua;Liang, Manchun;Zhou, Jianqiu;Wang, Yunfu;He, Shuijun;Yang, Jie;Yang, Dandan;Shen, Hongmin;Wang, Xiangwei
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2377-2386
    • /
    • 2021
  • To model the atmospheric dispersion of radionuclides released from nuclear accident is very important for nuclear emergency. But the uncertainty of model parameters, such as source term and meteorological data, may significantly affect the prediction accuracy. Data assimilation (DA) is usually used to improve the model prediction with the measurements. The paper proposed a parameter bias transformation method combined with Lagrangian puff model to perform DA. The method uses the transformation of coordinates to approximate the effect of parameters bias. The uncertainty of four model parameters is considered in the paper: release rate, wind speed, wind direction and plume height. And particle swarm optimization is used for searching the optimal parameters. Twin experiment and Kincaid experiment are used to evaluate the performance of the proposed method. The results show that the proposed method can effectively increase the reliability of model prediction and estimate the parameters. It has the advantage of clear concept and simple calculation. It will be useful for improving the result of atmospheric dispersion model at the early stage of nuclear emergency.

원자력발전소 안전등급 대형유도전동기의 기기검증 (Equipment Qualification of a Safety-related Large Induction Motor for Nuclear Power Plants)

  • 고우식;김진;허익구;최병원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.498-503
    • /
    • 2000
  • A safety-related equipment for use in Nuclear Power Plant should be needed an Equipment Qualification. This paper presents the approach, methods, philosophies, and procedures for qualifying the large squirrel-cage induction electric pump motors for use in ULCHIN 5&6 Nuclear Power Plants. In this paper, the method of qualification is a combination of type test and analysis method, which is composed of Radiation exposure test, Seismic simulation test, Thermal aging analysis for non-metallic materials and Seismic analysis. It is found that the motor performs its safety function with no failure mechanism under postulated service conditions.

  • PDF

원자력발전소 안전등급 대형유도전동기의 기기검증 (Equipment Qualification of a Safety-related Large Induction Motor for Nuclear Power Plants)

  • 이형우;고우식;류정현;박노길
    • 한국정밀공학회지
    • /
    • 제24권6호
    • /
    • pp.72-77
    • /
    • 2007
  • A safety-related equipment for the nuclear power plant should be needed an equipment qualification. In this paper, the approach, methods, philosophies, and procedures for qualifying the large squirrel-cage induction electric pump motors for use in ULCHIN 5, 6 Nuclear Power Plants were presented. The method of qualification is a combination of experimental test and analytic method, which is composed of radiation exposure test, seismic simulation test, thermal aging analysis for non-metallic materials, and seismic analysis. The results showed that the motor performed its safety function with no failure mechanism under postulated service conditions.

ATWS Frequency Quantification Focusing on Digital I&C Failures

  • Kang Hyun Gook;Jang Seung-Cheol;Lim Ho-Gon
    • Nuclear Engineering and Technology
    • /
    • 제36권2호
    • /
    • pp.184-195
    • /
    • 2004
  • The multi-tasking feature of digital I&C equipment could increase risk concentration because the I&C equipment affects the actuation of the safety functions in several ways. Anticipated Transient without Scram (ATWS) is a typical case of safety function failure in nuclear power plants. In a conventional analysis, mechanical failures are treated as the main contributors of the ATWS. This paper quantitatively presents the probability of the ATWS based on a fault tree analysis of a Korea Standard Nuclear Power Plant is also presented. An analysis of the digital equipment in the digital plant protection system. The results show that the digital system severely affects the ATWS frequency. We also present the results of a sensitivity study, which show the effects of the important factors, and discuss the dependency between human operator failure and digital equipment failure.

이중 에너지 엑스레이 흡수기의 가동 시간에 따른 골밀도 값의 평가 (The Bone Mineral Density Value According to the Operating Time of the Dual Energy X-ray)

  • 이해정;김호성;김은혜
    • 핵의학기술
    • /
    • 제14권1호
    • /
    • pp.40-45
    • /
    • 2010
  • Purpose: Recently, the performance of the X-ray tube was very much improved by the power generation of the technology. However, the overload of equipment is occurred by the increment of the equipment operating time according to the increment of the examination number of cases. The X-ray dose can change by heat occurrence of the X-ray tube due to this. Moreover, the change of the bone mineral density value is possible to occur. Therefore, We tries to whether the change of the bone mineral density value of each equipment according to the difference of the examination number of cases and operating time occur or not. Materials and Methods: The BMD value was measured by the Aluminum Spine Phantom and the European Spine Phantom in each equipment, in order to find out about the difference of the time general classification bone mineral density value by using the Dual energy X-ray absorptiometry. And after scanning each phantom by using X-ray dose meter (Unfors Mult-O-Meter), a dose was measured by the same condition. As to, an average and standard deviation were found and the change of each equipment much BMD value was compared and it evaluated. Results: $Mean{\pm}SD$ of each equipment by using the Aluminum Spine Phantom, A equipment was $1.174{\pm}0.002$, $1.171{\pm}0.005$, $1.173{\pm}0.005$, B equipment was $1.186{\pm}0.003$, $1.187{\pm}0.003$, $1.185{\pm}0.003$, C equipment was $1.180{\pm}0.003$, $1.182{\pm}0.004$, $1.183{\pm}0.002$, D equipment was $1.188{\pm}0.004$, $1.185{\pm}0.003$, $1.185{\pm}0.004$. By using the European Spine Phantom, A equipment was $1.143{\pm}0.006$, $1.153{\pm}0.009$, $1.161{\pm}0.003$, B equipment was $1.134{\pm}0.004$, $1.13{\pm}0.008$, $1.127{\pm}0.015$, C equipment was $1.143{\pm}0.006$, $1.134{\pm}0.01$, $1.133{\pm}0.006$, D equipment was $1.14{\pm}0.001$, $1.122{\pm}0.002$, $1.131{\pm}0.008$, altogether included in the normal range. Conclusion: There was no significant change of the BMD value of using a phantom by time zones. Therefore, if the quality control is made to use the extent management method of the equipment for beginning in the present application, the reliability of the BMD equipment will be able to be enhanced.

  • PDF

Antecedents of self-reported safety behaviors among commissioning workers in nuclear power plants: The roles of demographics, personality traits and safety attitudes

  • Tao, Da;Liu, Zhaopeng;Diao, Xiaofeng;Tan, Haibo;Qu, Xingda;Zhang, Tingru
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1454-1463
    • /
    • 2021
  • Demographics, personality traits and attitudes are related to safety behaviors in varied workplaces, but their roles in nuclear power plants (NPPs) have not been fully understood. This study was conducted to explore the roles of a set of demographic, personality and attitudinal factors on self-reported safety behaviors (including safety participation and human errors) among NPP commissioning workers. Survey data were collected from 157 Chinese commissioning workers. Results showed that age and work experience were significantly associated with human errors, but not with safety participation. Neuroticism and conscientiousness were significantly related to human errors, while neuroticism, conscientiousness and agreeableness were significantly related to safety participation. Attitude towards questioning was observed as an antecedent of safety participation, and functioned as a mediating variable in the relation between conscientiousness and safety behaviors. The findings provide evidence-based implications on the design of diverse interventions and strategies for the promotion of safety behaviors in NPPs.

기능체계를 활용한 원자력발전소 설비 중요도 등급 분류 (Equipment Importance Classification of Nuclear Power Plants Using Functional Based System)

  • 현진우;염동운
    • 에너지공학
    • /
    • 제20권3호
    • /
    • pp.200-208
    • /
    • 2011
  • 한국수력원자력(주)은 원자력발전소 설비를 체계적으로 정의하여 관리하고 있으며 효과적인 유지보수 및 예방정비최적화를 위하여 설비마다 기능적중요도등급을 부여하여 운영하고 있다. 하지만 기존의 설비 중요도등급 결정은 설비가 갖고 있는 역할(기능) 측면보다는 기기 수준에서 수행하다 보니 발전소간, 계통간 및 엔지니어간 분류기준에 대한 해석차이로 많은 편차가 발생하여 반복된 작업이 수행되었다. 이를 보완하고자 정비규정을 활용한 기능중심체계에서 설비중요도분류 방법론을 개발하고 신규원전에 대하여 기능적 관점으로 설비중요도결정 작업을 수행하였다. 또한 각 기기에 대한 중요도결정 근거를 체계적으로 문서화함으로서 발전소 적용 시 운영자로 하여금 결정내역에 대한 이해와 활용을 용이하도록 하였다.

원자력발전소 토양에 대한 파일롯 규모 토양세척기술 실증 (Verification of Pilot Scale Soil Washing Equipment on Nuclear Power Plant Soil)

  • 손중권;강기두;김학수;박경록;김경덕
    • 방사성폐기물학회지
    • /
    • 제2권4호
    • /
    • pp.245-251
    • /
    • 2004
  • 원전의 정상운전이나 해체시 발생될 수 있는 토양의 제염을 위한 토양제염장치를 개발하였으며 실증 실험을 수행하였다. 제염장치를 이용한 제염실험을 종합해본 결과 제염조건에 큰 상관없이 $80{\%}$이상의 제염율을 얻을 수 있었다. 방사능 준위 및 토양입도에 의한 실험결과를 보면 낮은 방사능 농도 및 고입도의 제염율이 다소 높음을 알 수 있었다. 제염용액과 토양질량의 비에 따른 제염율은 제염제 부피를 두배로 높였을 경우 방사능 농도가 높은 경우에 큰 것으로 나타났다. 반복 제염은 $0.5{\sim}2.0mm$의 다소 작은 입자에 더욱 효과적으로, 제염이 어려운 작은 입자의 반복제염시 방사능 저감 효과가 비교적 크게 나타났다. 본 오염토양 제염장치를 활용하면 원전에서 발생되는 오염토양의 방사능 농도를 줄일 뿐 아니라 처분양을 줄여 저장공간의 확보에 기여할 뿐만 아니라 향후 원전의 해체시에도 유용하게 활용될 수 있으리라 생각된다.

  • PDF