DOI QR코드

DOI QR Code

A simple data assimilation method to improve atmospheric dispersion based on Lagrangian puff model

  • Li, Ke (State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, China Nuclear Power Engineering Co., Ltd) ;
  • Chen, Weihua (State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, China Nuclear Power Engineering Co., Ltd) ;
  • Liang, Manchun (Department of Engineering Physics, Tsinghua University) ;
  • Zhou, Jianqiu (State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, China Nuclear Power Engineering Co., Ltd) ;
  • Wang, Yunfu (State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, China Nuclear Power Engineering Co., Ltd) ;
  • He, Shuijun (Department of Engineering Physics, Tsinghua University) ;
  • Yang, Jie (Beijing Global Safety Technology Co., Ltd) ;
  • Yang, Dandan (Beijing Global Safety Technology Co., Ltd) ;
  • Shen, Hongmin (Beijing Global Safety Technology Co., Ltd) ;
  • Wang, Xiangwei (Department of Engineering Physics, Tsinghua University)
  • Received : 2020.08.31
  • Accepted : 2021.01.30
  • Published : 2021.07.25

Abstract

To model the atmospheric dispersion of radionuclides released from nuclear accident is very important for nuclear emergency. But the uncertainty of model parameters, such as source term and meteorological data, may significantly affect the prediction accuracy. Data assimilation (DA) is usually used to improve the model prediction with the measurements. The paper proposed a parameter bias transformation method combined with Lagrangian puff model to perform DA. The method uses the transformation of coordinates to approximate the effect of parameters bias. The uncertainty of four model parameters is considered in the paper: release rate, wind speed, wind direction and plume height. And particle swarm optimization is used for searching the optimal parameters. Twin experiment and Kincaid experiment are used to evaluate the performance of the proposed method. The results show that the proposed method can effectively increase the reliability of model prediction and estimate the parameters. It has the advantage of clear concept and simple calculation. It will be useful for improving the result of atmospheric dispersion model at the early stage of nuclear emergency.

Keywords

Acknowledgement

This work was supported by the State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment under Grant number K-A2019.403.

References

  1. IAEA, The Fukushima Daiichi Accident[J], International Atomic Energy Agency: Report by the Director General, 2015.
  2. R.L. Lee, J.R. Albritton, K. Foster, et al., ARAC-3, A New Modeling System for Real-Time Response and Assessments of Atmospheric release[C]//10th Joint Conference on the Applications of Air Pollution Meteorology with the A&WMA, 1998.
  3. J. Ehrhardt, The RODOS system: decision support for off-site emergency management in Europe[J], Radiat. Protect. Dosim. 73 (1-4) (1997) 35-40. https://doi.org/10.1093/oxfordjournals.rpd.a032160
  4. M. Chino, H. Ishikawa, H. Yamazawa, SPEEDI and WSPEEDI: Japanese emergency response systems to predict radiological impacts in local and workplace areas due to a nuclear accident[J], Radiat. Protect. Dosim. 50 (2-4) (1993) 145-152. https://doi.org/10.1093/rpd/50.2-4.145
  5. M. Hutchinson, H. Oh, W.H. Chen, A review of source term estimation methods for atmospheric dispersion events using static or mobile sensors[J], Inf. Fusion 36 (2017) 130-148. https://doi.org/10.1016/j.inffus.2016.11.010
  6. C. Rojas-Palma, H. Madsen, F. Gering, et al., Data assimilation in the decision support system RODOS[J], Radiat. Protect. Dosim. 104 (1) (2003) 31-40. https://doi.org/10.1093/oxfordjournals.rpd.a006160
  7. P. Astrup, C. Turcanu, R. Puch, Data Assimilation in the Early Phase: Kalman Filtering RIMPUFF vol. 1466, Riso-R, EN), 2004.
  8. M. Drews, B. Lauritzen, H. Madsen, Analysis of a Kalman filter based method for on-line estimation of atmospheric dispersion parameters using radiation monitoring data, Radiat. Protect. Dosim. 113 (No. 1) (2004) 75-89. https://doi.org/10.1093/rpd/nch423
  9. M. Krysta, M. Bocquet, B. Sportisse, et al., Data assimilation for short-range dispersion of radionuclides: an application to wind tunnel data[J], Atmos. Environ. 40 (38) (2006) 7267-7279. https://doi.org/10.1016/j.atmosenv.2006.06.043
  10. M. Krysta, M. Bocquet, J. Brandt, Probing ETEX-II data set with inverse modelling[J], Atmos. Chem. Phys. 8 (14) (2008) 3963-3971. https://doi.org/10.5194/acp-8-3963-2008
  11. V. Tsiouri, I. Kovalets, S. Andronopoulos, et al., Emission rate estimation through data assimilation of gamma dose measurements in a Lagrangian atmospheric dispersion model[J], Radiat. Protect. Dosim. 148 (1) (2011) 34-44. https://doi.org/10.1093/rpd/ncq592
  12. R. Hofman, V. Smidl, P. Pecha, Development of real-time Bayesian data assimilation system for off-site consequence assessment, Progress in Nuclear Science and Technology 4 (2014) 771-774. https://doi.org/10.15669/pnst.4.771
  13. P.H. Hiemstra, D. Karssenberg, A. van Dijk, Assimilation of observations of radiation level into an atmospheric transport model: a case study with the particle filter and the ETEX tracer dataset[J], Atmos. Environ. 45 (34) (2011) 6149-6157. https://doi.org/10.1016/j.atmosenv.2011.08.024
  14. P.H. Hiemstra, D. Karssenberg, A. Van Dijk, et al., Using the particle filter for nuclear decision support[J], Environ. Model. Software 37 (2012) 78-89. https://doi.org/10.1016/j.envsoft.2012.03.003
  15. X.L. Zhang, G.F. Su, H.Y. Yuan, et al., Modified ensemble Kalman filter for nuclear accident atmospheric dispersion: prediction improved and source estimated[J], J. Hazard Mater. 280 (2014) 143-155. https://doi.org/10.1016/j.jhazmat.2014.07.064
  16. X.L. Zhang, G.F. Su, J.G. Chen, et al., Iterative ensemble Kalman filter for atmospheric dispersion in nuclear accidents: an application to Kincaid tracer experiment[J], J. Hazard Mater. 297 (2015) 329-339. https://doi.org/10.1016/j.jhazmat.2015.05.035
  17. D. Quelo, B. Sportisse, O. Isnard, Data assimilation for short range atmospheric dispersion of radionuclides: a case study of second-order sensitivity[J], J. Environ. Radioact. 84 (3) (2005) 393-408. https://doi.org/10.1016/j.jenvrad.2005.04.011
  18. D.Q. Zheng, J.K.C. Leung, B.Y. Lee, Online update of model state and parameters of a Monte Carlo atmospheric dispersion model by using ensemble Kalman filter[J], Atmos. Environ. 43 (12) (2009) 2005-2011. https://doi.org/10.1016/j.atmosenv.2009.01.014
  19. P.H. Hiemstra, D. Karssenberg, A. van Dijk, Assimilation of observations of radiation level into an atmospheric transport model: a case study with the particle filter and the ETEX tracer dataset[J], Atmos. Environ. 45 (34) (2011) 6149-6157. https://doi.org/10.1016/j.atmosenv.2011.08.024
  20. H. Eleveld, Y.S. Kok, C.J.W. Twenhofel, Data assimilation, sensitivity and uncertainty analyses in the Dutch nuclear emergency management system: a pilot study[J], Int. J. Emerg. Manag. 4 (3) (2007) 551-563. https://doi.org/10.1504/IJEM.2007.014302
  21. S. Thykier-Nielsen, S. Deme, T. Mikkelsen, Description of the Atmospheric Dispersion Module RIMPUFF[J], Riso National Laboratory, PO Box, 1999, p. 49.
  22. J.S. Scire, D.G. Strimaitis, R.J. Yamartino, A User's Guide for the CALPUFF Dispersion model[J] vol. 10, Earth Tech, Inc., Concord, MA, 2000.
  23. H.N. Webster, D.J. Thomson, Validation of a Lagrangian model plume rise scheme using the Kincaid data set[J], Atmos. Environ. 36 (32) (2002) 5031-5042. https://doi.org/10.1016/S1352-2310(02)00559-9
  24. H.R. Olesen, Model validation kit-recent developments[J], Int. J. Environ. Pollut. 16 (1-6) (2001) 129-136. https://doi.org/10.1504/IJEP.2001.000612
  25. L. Bengtsson, M. Ghil, E. Kallen, Dynamic Meteorology: Data Assimilation methods[M], Springer, New York, 1981.

Cited by

  1. Experimental study on the effect of turbulence on hot-smoke dispersion ejecting in a cross flow vol.17, pp.1, 2022, https://doi.org/10.1299/jtst.21-00296