• 제목/요약/키워드: nuclear energy technologies

검색결과 201건 처리시간 0.024초

Challenges in Green Innovation Policy after the Fukushima Nuclear Accident

  • Wada, Tomoaki
    • STI Policy Review
    • /
    • 제4권1호
    • /
    • pp.135-161
    • /
    • 2013
  • This paper examines Japan's Science and Technology (S&T) Basic Plans in accordance with its S&T Basic Law. The Basic Plans promote two major innovation (Green Innovation and Life Innovation) towards the creation of new markets and jobs, specifically under the Fourth S&T Basic Plan enacted on August 2011. Successful smart community demonstration projects at four urban localities were launched under plans to promote Green Innovation research and development of renewable energy technologies. However, the expectation that renewable energy such as solar or wind power can replace nuclear power is not backed by sufficient evidence. Furthermore, the electricity produced by these sources is expensive and unstable owing to its reliance on weather conditions. The Fukushima nuclear power plant accident on March 2011 has also seriously affected Japan's future energy plans. According to a government estimate, electricity charges would double if nuclear power generation were abandoned, imposing a heavy burden on the Japanese economy. Japan is in need of energy policies designed on the basis of more far-sighted initiatives.

핵연료주기 다자화 제안의 잠재적 영향 평가 (Assessment of Potential Impacts of the Proposals for Multilateralization of Nuclear Fuel Cycle)

  • 문주현
    • 방사성폐기물학회지
    • /
    • 제8권4호
    • /
    • pp.339-346
    • /
    • 2010
  • 최근 전 세계적인 원자력 수요 급증으로 민감 기술의 확산에 대한 우려가 커지고 있다. 원자력 수요 증가에 대처하면서 핵비확산체제를 강화하기 위해, 다수의 '핵연료주기 다자화' 방안이 제안되었다.' 핵연료주기 다자화' 방안이 실현될 경우, 우리나라에 영향을 미칠 것으로 예상된다. 따라서 본 논문에서는'핵연료주기 다자화' 움직임에 대해 우리나라의 적절한 대응책 마련에 도움을 주기 위해, 12가지 기존의 '핵연료주기 다자화 방안'을 검토하고, 우리나라에 미칠 잠재적 영향을 평가하였다.

CFD ANALYSIS OF HEAVY LIQUID METAL FLOW IN THE CORE OF THE HELIOS LOOP

  • Batta, A.;Cho, Jae-Hyun;Class, A.G.;Hwang, Il-Soon
    • Nuclear Engineering and Technology
    • /
    • 제42권6호
    • /
    • pp.656-661
    • /
    • 2010
  • Lead-alloys are very attractive nuclear coolants due to their thermo-hydraulic, chemical, and neutronic properties. By utilizing the HELIOS (Heavy Eutectic liquid metal Loop for Integral test of Operability and Safety of PEACER$^2$) facility, a thermal hydraulic benchmarking study has been conducted for the prediction of pressure loss in lead-alloy cooled advanced nuclear energy systems (LACANES). The loop has several complex components that cannot be readily characterized with available pressure loss correlations. Among these components is the core, composed of a vessel, a barrel, heaters separated by complex spacers, and the plenum. Due to the complex shape of the core, its pressure loss is comparable to that of the rest of the loop. Detailed CFD simulations employing different CFD codes are used to determine the pressure loss, and it is found that the spacers contribute to nearly 90 percent of the total pressure loss. In the system codes, spacers are usually accounted for; however, due to the lack of correlations for the exact spacer geometry, the accuracy of models relies strongly on assumptions used for modeling spacers. CFD can be used to determine an appropriate correlation. However, application of CFD also requires careful choice of turbulence models and numerical meshes, which are selected based on extensive experience with liquid metal flow simulations for the KALLA lab. In this paper consistent results of CFX and Star-CD are obtained and compared to measured data. Measured data of the pressure loss of the core are obtained with a differential pressure transducer located between the core inlet and outlet at a flow rate of 13.57kg/s.

Comprehensive Comparative Assessment of National Energy and Power Systems

  • Kim, Tae-Woon;Ha, J.J.;Lee, Sung-Jin;Chang, Soon-H.;Kim, Seong-Ho
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 2004년도 추계학술발표회 발표논문집
    • /
    • pp.1459-1460
    • /
    • 2004
  • An AHP-based framework for comprehensive comparison of several power technologies haas been developed. A questionnaire has been designed and is about to surveyed for extracting boty weight vectors and subjective evaluation values. The attitude of evaluator groups will be incorporated into these two types of quantification.

  • PDF

System Dynamics를 이용한 원자력발전의 기술가치 평가 (A System Dynamics Approach for Valuing Nuclear Power Technology)

  • 이용석
    • 한국시스템다이내믹스연구
    • /
    • 제7권2호
    • /
    • pp.57-80
    • /
    • 2006
  • Nuclear technology made a great contribution to the national economy and society by localization of nuclear power plant design, and by stabilization of electricity price, etc. It is very important to conduct the retrospective analysis for the nuclear technology contribution to the national economy and society, but it is more important to conduct prospective analysis for the nuclear technology contribution. The term "technology value" is often used in the prospective analysis to value the result of technology development. There are various definitions of technology value, but generally it means the increment of future revenue or the reduction of future cost by technology development. These technology valuation methods are widely used in various fields (information technology or energy technology, etc). The main objective of this research is to develop valuation methodology that represents unique characteristics of nuclear power technology. The valuation methodology that incorporates market share changes of generation technologies was developed. The technology valuation model which consists of five modules (electricity demand forecast module, technology development module, market share module, electricity generation module, total cost module) to incorporate market share changes of generation technologies was developed. The nuclear power technology value assessed by this technology valuation model was 3 times more than the value assessed by the conventional method. So it was confirmed that it is very important to incorporates market share changes of generation technologies. The valuation results of nuclear power technology in this study can be used as policy data for ensuring the benefits of nuclear power R&D (Research and Development) investment.

  • PDF

NANOTECHNOLOGY FOR ADVANCED NUCLEAR THERMAL-HYDRAULICS AND SAFETY: BOILING AND CONDENSATION

  • Bang, In-Cheol;Jeong, Ji-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제43권3호
    • /
    • pp.217-242
    • /
    • 2011
  • A variety of Generation III/III+ water-cooled reactor designs featuring enhanced safety and improved economics are being proposed by nuclear power industries around the world in efforts to solve the future energy supply shortfall. Thermal-hydraulics is recognized as a key scientific subject in the development of innovative reactor systems. Phase change by boiling and condensation in the reverse process is a highly efficient heat transport mechanism that accommodates large heat fluxes with relatively small driving temperature differences. This mode of heat transfer is encountered in a wide spectrum of nuclear systems,and thus it is necessary to determine the thermal limit of water-cooled nuclear energy conversion in terms of economic and safety. Such applications are being advanced with the introduction of new technologies such as nanotechnology. Here, we investigated newly-introduced nanotechnologies relevant to boiling and condensation in general engineering applications. We also evaluated the potential linkage between such new advancements and nuclear applications in terms of advanced nuclear thermal-hydraulics.

NUCLEAR HUMAN RESOURCE PROJECTION UP TO 2030 IN KOREA

  • Min, Byung-Joo;Lee, Man-Ki;Nam, Kee-Yung;Jeong, Ki-Ho
    • Nuclear Engineering and Technology
    • /
    • 제43권4호
    • /
    • pp.375-382
    • /
    • 2011
  • The prospects for growth of the nuclear power industry in Korea have improved remarkably as the demand for energy increases in stride with economic development. Meanwhile, as nuclear energy development is enhanced, nuclear technology has also improved evolutionarily and innovatively in the areas of reactor design and safety measures. As nuclear technology development in Korea advances, more human resources are required. Accordingly, the need for a well-managed program of human resource development (HRD) aimed at assuring needed capacities, skills, and knowledge and maintaining valuable human resources through education and training in various nuclear-related fields has been recognized. A well-defined and object-oriented human resource development and management (HRD&M) is to be developed in order to balance between the dynamics of supply and demand of the workforce in the nuclear industry. The HRD&M schemes include a broad base of disciplines, education, sciences, and technologies within a framework of national sustainable development goals, which are generally considered to include economics, environment, and social concerns. In this study, the projection methodology considering a variety of economic, social, and environmental factors was developed. Using the developed methodology, medium- and long-term nuclear human resources projections up to 2030 were conducted in compliance with the national nuclear technology development programmes and plans.

JAEA'S VHTR FOR HYDROGEN AND ELECTRICITY COGENERATION : GTHTR300C

  • Kunitomi, Kazuhiko;Yan, Xing;Nishihara, Tetsuo;Sakaba, Nariaki;Mouri, Tomoaki
    • Nuclear Engineering and Technology
    • /
    • 제39권1호
    • /
    • pp.9-20
    • /
    • 2007
  • Design study on the Gas Turbine High Temperature Reactor 300-Cogeneration (GTHTR300C) aiming at producing both electricity by a gas turbine and hydrogen by a thermochemical water splitting method (IS process method) has been conducted. It is expected to be one of the most attractive systems to provide hydrogen for fuel cell vehicles after 2030. The GTHTR300C employs a block type Very High Temperature Reactor (VHTR) with thermal power of 600MW and outlet coolant temperature of $950^{\circ}C$. The intermediate heat exchanger (IHX) and the gas turbine are arranged in series in the primary circuit. The IHX transfers the heat of 170MW to the secondary system used for hydrogen production. The balance of the reactor thermal power is used for electricity generation. The GTHTR300C is designed based on the existing technologies of the High Temperature Engineering Test Reactor (HTTR) and helium turbine power conversion and on the technologies whose development have been well under way for IS hydrogen production process so as to minimize cost and risk of deployment. This paper describes the original design features focusing on the plant layout and plant cycle of the GTHTR300C together with present development status of the GTHTR300, IHX, etc. Also, the advantage of the GTHTR300C is presented.

Recent Developments in Nuclear Forensic and Nuclear Safeguards Analysis Using Mass Spectrometry

  • Song, Kyuseok;Park, Jong-Ho;Lee, Chi-Gyu;Han, Sun-Ho
    • Mass Spectrometry Letters
    • /
    • 제7권2호
    • /
    • pp.31-40
    • /
    • 2016
  • The analysis of nuclear materials and environmental samples is an important issue in nuclear safeguards and nuclear forensics. An analysis technique for safeguard samples has been developed for the detection of undeclared nuclear activities and verification of declared nuclear activities, while nuclear forensics has been developed to trace the origins and intended use of illicitly trafficked nuclear or radioactive materials. In these two analytical techniques, mass spectrometry has played an important role in determining the isotope ratio of various nuclides, contents of trace elements, and production dates. These two techniques typically use similar analytical instruments, but the analytical procedure and the interpretation of analytical results differ depending on the analytical purpose. The isotopic ratio of the samples is considered the most important result in an environmental sample analysis, while age dating and impurity analysis may also be important for nuclear forensics. In this review, important aspects of these techniques are compared and the role of mass spectrometry, along with recent progress in related technologies, are discussed.