• Title/Summary/Keyword: nozzle problem

Search Result 153, Processing Time 0.037 seconds

Inertia Force Problem and Nozzle Contact Mechanism of Linear Motor Drive Injection Molding Machine

  • Bang, Young-Bong;Susumu Ito
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.5
    • /
    • pp.34-40
    • /
    • 2003
  • This paper presents the inertial force problem of ultrahigh-speed injection molding machine using linear motors, and presents its solutions. To make very thin products by injection molding, very high injection speed is required, and linear motors are used for this purpose. However, direct drive by linear motors may cause brief nozzle separation from the sprue bushing because of the inertia force which is as large as the total output thrust of the linear motors, and this momentary separation can cause molten plastic to leak. In this paper, two solutions are proposed for this inertia force problem. One is the mechanical cancellation of the inertia force, and the other is to increase the nozzle contact force. With the latter solution, the stationary platen bending worsens, so a new nozzle contact mechanism is also proposed, which can prevent the stationary platen bending.

Inertia Force Problem and Nozzle Contact Mechanism on Linear Motor Drive Injection Molding Machine (리니어모터식 사출성형기의 반력문제 및 노즐터치기구)

  • Bang, Yeong-Bong;Yun, Deung-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.171-177
    • /
    • 2002
  • This paper presents the inertial force problem of ultrahigh-speed injection molding machine using linear motors, and presents its solutions. To make very thin products by injection molding, very high injection speed is required, and linear motors are used for this purpose. But direct drive by linear motors may cause brief nozzle separation from the sprue bushing because of the inertia force as large as the total output thrust of the linear motors, and this momentary separation can cause molten plastic leakage. In this paper, two solutions are proposed for this inertia force problem. One is the mechanical cancellation of the inertia force, and the other to increase the nozzle contact force. With the latter solution, the stationary platen bending worsens, so a new nozzle contact mechanism is also proposed, which can prevent the stationary platen bending.

MEASURE THEORETICAL APPROACH FOR OPTIMAL SHAPE DESIGN OF A NOZZLE

  • FARAHI M. H.;BORZABADI A. H.;MEHNE H. H.;KAMYAD A. V.
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.315-328
    • /
    • 2005
  • In this paper we present a new method for designing a nozzle. In fact the problem is to find the optimal domain for the solution of a linear or nonlinear boundary value PDE, where the boundary condition is defined over an unspecified domain. By an embedding process, the problem is first transformed to a new shape-measure problem, and then this new problem is replaced by another in which we seek to minimize a linear form over a subset of linear equalities. This minimization is global, and the theory allows us to develop a computational method to find the solution by a finite-dimensional linear programming problem.

Examination of 2-Fluid Nozzle and 3-Fluid Nozzle for Fuel Reformer of 5 kW SOFC System (5 kW급 SOFC 시스템의 연료 개질기를 위한 2-유체 노즐과 3-유체 노즐의 검토)

  • Kwon, Hwa-Kil;Lee, Chi-Young;Lee, Sang-Yong
    • Journal of ILASS-Korea
    • /
    • v.13 no.1
    • /
    • pp.16-21
    • /
    • 2008
  • In the present study, the 2-fluid nozzle and 3-fluid nozzle to atomize the diesel and water with air for the fuel reformer of SOFC system were experimentally examined. In the 2-fluid nozzle, the diesel and water were alternately atomized due to bislug flow pattern, and it implies that the mixing of both liquids strongly affects the atomization pattern. On the other hand, in the 3-fluid nozzle, the diesel and water were atomized simultaneously due to the separated injection channels without mixing problem. Therefore, compared to the 2-fluid nozzle, the 3-fluid nozzle is suitable for the stable operation of the fuel reformer. In case of the 3-fluid nozzle, Type A where the air was supplied through the central channel was the most efficient.

  • PDF

Optimization Algorithm of Gantry Route Problem for Odd-type Surface Mount Device (이형 부품 표면실장기에 대한 겐트리 경로 문제의 최적 알고리즘)

  • Jeong, Jaewook;Tae, Hyunchul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.67-75
    • /
    • 2020
  • This paper proposes a methodology for gantry route optimization in order to maximize the productivity of a odd-type surface mount device (SMD). A odd-type SMD is a machine that uses a gantry to mount electronic components on the placement point of a printed circuit board (PCB). The gantry needs a nozzle to move its electronic components. There is a suitability between the nozzle and the electronic component, and the mounting speed varies depending on the suitability. When it is difficult for the nozzle to adsorb electronic components, nozzle exchange is performed, and nozzle exchange takes a certain amount of time. The gantry route optimization problem is divided into the mounting order on PCB and the allocation of nozzles and electronic components to the gantry. Nozzle and electronic component allocation minimized the time incurred by nozzle exchange and nozzle-to-electronic component compatibility by using an mixed integer programming method. Sequence of mounting points on PCB minimizes travel time by using the branch-and-price method. Experimental data was made by randomly picking the location of the mounting point on a PCB of 800mm in width and 800mm in length. The number of mounting points is divided into 25, 50, 75, and 100, and experiments are conducted according to the number of types of electronic components, number of nozzle types, and suitability between nozzles and electronic components, respectively. Because the experimental data are random, the calculation time is not constant, but it is confirmed that the gantry route is found within a reasonable time.

Prediction of the Thrust Center Movement Due To Rocket Nozzle Deflection (로켓 노즐 변위에 따른 추력 중심 변화 예측)

  • Ok, Ho-Nam;Kim, In-Sun
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.136-145
    • /
    • 2007
  • A computation was made to predict the movement of the thrust center position due to the rocket nozzle deflection. Three dimensional computations were done for the nozzle deflection angles of 0/1/3 degrees, and the oscillation of aerodynamic coefficients, not observed for the axisymmetric cases, was encountered. The position of the thrust center was found to be at -16 mm and -4 mm for the deflection angles of 1 and 3 degrees, respectively, and it can be concluded that the thrust center movement due to nozzle deflection is negligible. In addition to the computational results, the mechanism of thrust generation in a rocket engine is described with a brief mathematical derivation as it is sometimes mistaken. Also presented are some descriptions on the problem of pressure center definition for symmetric cases such as a rocket external flow problem and the nozzle deflection case.

  • PDF

A NUMERICAL INVESTIGATION ON THE INTERNAL FLOW CHARACTERISTICS IN TURBINE NOZZLE BY VARIATION OF ITS FLOW AREA (목 면적 변화에 따른 터빈노즐 내부 유동 특성에 관한 수치적 조사)

  • Kim, Y.C.;Kang, W.T.;Shin, B.R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.584-585
    • /
    • 2010
  • A numerical simulation was performed to investigate the internal flow characteristics in gas turbine nozzle by the variation of flow area of the nozzle. In general the area of turbine nozzle is chosen by the most substantial factor on performance improvement of turbine at the first stage. In the performances test through CFD analysis for three types of nozzle with conventional, enlarged and reduced area, reduced one with effective flow area (EFA) was the most efficient. That is the minimum effective value within EFA limit defined by the manual of technical order had a good performance. It is useful to avoid the low power problem in the test of performance after maintenance and overhaul of turbine engine.

  • PDF

SHAPING A NOZZLE WITH A CENTRAL BODY (스파이크 노즐 설계)

  • KIM C. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.293-298
    • /
    • 2005
  • We calculate the coordinates of an axisymmetric nozzle with a central body. This nozzle ensures a transonic flow with a plane sound surface, which is orthogonal to the symmetry axis and has a wall kink at the sonic point, The Chaplygin transformation in the subsonic part of the flow leads the Dirichlet problem for a system of nonlinear equations. The definition domain of the solution in the velocity-hodograph plane is taken as a rectangle. This enables one to obtain the nozzle with a monotonic distribution of velocity along its subsonic part. In the nonlinear differential equation, the linear Chaplygin operator for plane flows is separated, which allows the iterative calculation of the solution. The supersonic part of the nozzle is calculated under the assumption that the flow at the nozzle exit is uniform and parallel to the symmetry axis; i.e., the supersonic jet outflows to the submerged space with the same pressure. The calculation is performed by the characteristic method. The exact solution of Tricomi equation for near-sonic flows with the straight sonic line is used to 'move away' the sound plane. The velocity distribution alone the supersonic part of the nozzle is also monotonic, which ensures the absence of the boundary-layer separation and, therefore, the adequacy of the ideal-gas model. calculations show that the flow in the supersonic part of the nozzle is continuous (compression shocks are absent)

  • PDF

Design of Supersonic Impulse Turbine Nozzle with Asymmetric Configuration using the Optimal Method (최적화기법을 이용한 초음속 충동형 터빈 노즐의 비대칭 설계)

  • Jeong, Soo-In;Choi, Byoung-Ik;Jeong, Eun-Hwan;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.61-65
    • /
    • 2011
  • In this paper, the nozzle design with asymmetric configuration using the optimal method is used in order to improve the under- and over-expansion problem of the flow at the supersonic turbine nozzle. For the design of nozzle contour, 8 design variables are selected and the total-to-static efficiency from the nozzle inlet to the wake outlet is considered as the objective function to be maximized. The Fluent6.3 and the iSIGHT-FD program are used for calculation of nozzle flow and design optimization respectively. RBF(Radial Basis Function) method is chosen for approximate optimization algorithm. It is shown that the static efficiency of improved nozzle design increases 1.35% and loss coefficient decreases 19.85% as compared to baseline design.

  • PDF

A Path Planning of Dispenser Machines in PCB Assembly System Using Genetic Algorithm

  • Woo, Min-Jung;Lee, Soo-Gil;Park, Tae-Hyoung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.52.2-52
    • /
    • 2001
  • We propose a new optimization method to improve the productivity of dispenser machines in PCB assembly lines. The optimization problem for multi-nozzle dispensers is formulated as a variant TSP. A genetic algorithm is applied to the problem to get a near-optimal solution. Chromosome and some operator are newly defined to implement the genetic algorithm for multi-nozzle dispensers. Simulation results are then presented to verify the usefulness of the method.

  • PDF