• Title/Summary/Keyword: nozzle location

Search Result 132, Processing Time 0.034 seconds

Numerical simulations of convergent-divergent nozzle and straight cylindrical supersonic diffuser

  • Mehta, R.C.;Natarajan, G.
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.4
    • /
    • pp.399-408
    • /
    • 2014
  • The flowfields inside a contour and a conical nozzle exhausting into a straight cylindrical supersonic diffuser are computed by solving numerically axisymmetric turbulent compressible Navier-Stokes equations for stagnation to ambient pressure ratios in the range 20 to 34. The diffuser inlet-to-nozzle throat area ratio and exit-to-throat area ratio are 21.77, and length-to-diameter ratio of the diffuser is 5. The flow characteristics of the conical and contour nozzle are compared with the help of velocity vector and Mach contour plots. The variations of Mach number along the centre line and wall of the conical nozzle, contour nozzle and the straight supersonic diffuser indicate the location of the shock and flow characteristics. The main aim of the present analysis is to delineate the flowfields of conical and contour nozzles operating under identical conditions and exhausting into a straight cylindrical supersonic diffuser.

The Effect of Nozzle's Location & Injection Angle on the Characteristics of Air Flow and $CO_2$ Extinguishant Transfer (노즐 위치 및 분사각이 공기유동 및 $CO_2$ 소화제 전달특성에 미치는 영향)

  • 박찬수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.472-484
    • /
    • 2002
  • To analyze the characteristics of air flow and $CO_2$ extinguishant transfer when extinguishant is injected into a closed space similar to marine engine room, a numerical simulation on a space was performed. Flow fields and $CO_2$ concentration fields are calculated according with the variation of the location & injection angle of nozzles. The results of simulation showed that the pattern of recirculation flow was affected greatly with the location & injection angle of nozzles and such a recirculation flow accelerated mass transfer of $CO_2$ and greatly affected the diffusion process of $CO_2$ extinguishant. It is considered that this result of this study can be useful to designing the arrangement of nozzles for the $CO_2$ fire fighting equipments in a marine engine room.

System Performance Variation for Relative Location of Pre-swirl Nozzles and Receiver Holes in Radial On-Board Injection Type Pre-swirl System (반경방향 분사방식 프리스월 시스템의 프리스월 노즐과 리시버 홀의 상대적 위치에 따른 시스템 성능변화)

  • Lee, Jonggeon;Lee, Hyungyu;Cho, Geonhwan;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.43-53
    • /
    • 2020
  • The effect of the relative location between pre-swirl nozzle and receiver hole on the performance of radial on-board injection type pre-swirl system was analyzed. In this study, tendency of the change of discharge coefficient and temperature drop efficiency were analyzed for 20 design points through the combination of 5 pre-swirl nozzle location and 4 receiver hole location. Discharge coefficient of system tended to be similar to the pressure ratio of the pre-swirl nozzle. System performance variation occurred as the flow structure in the cavity was affected by the surface, and the influence of the stationary surface is greater than that of the rotating surface. Discharge coefficient of system changed -1.39% to 1.25% and temperature drop efficiency changed -5.41% to 2.94% refer to reference design point.

A Numerical Study on the Effect of DVI Nozzle Location on the Thermal Mixing in RVDC

  • Kang, Hyung-Seok;Cho, Bong-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.283-288
    • /
    • 1996
  • Direct safety injection into the reactor vessel downcomer annulus(DVI) is a fundamental feature of the KNGR(Korean Next Generation Reactor) four-train safety injection system. The numerical analysis of thermal mixing of ECC(Emergency Core Cooling) water through DVI with the water in the RVDC(Reactor Vessel Downcomer) annulus has been performed, in order to study the impact of nozzle location on the pressurized thermal shock and safety analysis. The results of this study show that the thermal mixing due to the natural circulation induced by the limiting accident conditions is sufficient to prevent temperature in the RVDC from dropping to the level of concern for PTS. When the DVI nozzle is located right above the cold leg, the temperature distribution at the outlet of flow field is most uniform. The tool used for numerical analysis is CFDS-FLOW3D.

  • PDF

Effect of Nozzle Geometry on the Near Field Structure of Under Expanded, Dual, Coaxial Jet (노즐 형상이 부족팽창 동축제트 근접 유동장에 미치는 영향)

  • Lee, Kwon-Hee;Toshiake, Setoguchi;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1649-1654
    • /
    • 2004
  • The near field structures of an under-expanded, dual, coaxial, jets issuing from the coaxial nozzles with four different geometries are visualized by using a shadowgraph optical method. Experiments are conducted to investigate the effects of the nozzle-lip thickness, secondary stream thickness, the nozzle pressure ratio and the secondary swirl stream on the characteristics of under-expanded jets. The results show that the presence of secondary annular swirling stream causes the Mach disk to move further downstream and increases its diameter, which decreases with a decrease in the nozzle-lip thickness. The secondary stream thickness has an influence on the location of an annular shock wave.

  • PDF

Investigation of the shock structural formation of the supersonic nozzle jet with longitudinal variation of coaxial pipe location

  • Roh, Sung-Cheoul;Park, Jun-Young;Kim, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.784-788
    • /
    • 2004
  • A visualization study of shock formation of the supersonic jet nozzle using a Shadowgraph Method (SM) was carried out to investigate the effect of the longitudinal variation of coaxial pipe end tip position inside the supersonic nozzle. The experiment was performed for the Mach number range from 1.1 to 1.2 at nozzle exit. The well known shock cell structure was shown with the pipe end located deep inside the nozzle for the studied Mach number. With the pipe end approaches nozzle exit, it was found that the shock cell structure disappeared and turned into complex formation. In order to understand the mechanism of the shock structural change, computational simulation was carried out using the Navier-Stokes solver, FLUENT. Topological sketch was added with an aid of the visualization and the numerical simulation.

  • PDF

Numerical Study on Dynamic Characteristics of Pintle Nozzle for Variant Thrust (가변 추력용 핀틀 노즐의 동적 특성에 관한 수치적 연구)

  • Park, Hyung-Ju;Kim, Li-Na;Heo, Jun-Young;Sung, Hong-Gye;Yang, June-Seo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.213-217
    • /
    • 2011
  • Unsteady numerical simulations of pintle nozzles were implemented for solid rocket thrust vector control. The variation of pintle location was considered using unsteady numerical techniques, and dynamic characteristics of various pintle models were investigated. In order to consider the variation of the pintle location, a moving mesh method was applied. The effects of shape and location of the pintle nozzle have been analytically investigated. And the results were compared with numerical results. The chamber pressure, mass flow and thrust are analyzed to take account dynamic characteristics of pintle performance.

  • PDF

Behaviors of Mach Disk in Underexpanded Supersonic Moist Jet (초음속 습공기 제트에서 발생하는 마하디스크의 거동)

  • 백승철;김희동;권순범
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.87-90
    • /
    • 2003
  • It has been well known that the major feature of compressible flow fields might be different depending on their formation processes. The objectives of the present study is to investigates the effect of jet development on the time history of supersonic jet flow field, accompanying nonequilibrium condensation. Especially, the behaviors of Mach disk diameter and location in a supersonic moist air jet are presented in terms of nozzle pressure ratio and initial relative humidity. The relative humidity of moist air is controlled at the nozzle supply, and the nozzle pressure ratio is varied to obtain the moderately underexpanded flows at the exit of the nozzle, installed in an indraft wind tunnel. It is found that at the same pressure ratio the Mach disk diameter increases with the initial relative humidity, while moves further upstream. Furthermore, the values of Mach disk diameter and location for increasing pressure ratio show larger than those for increasing.

  • PDF

The Characteristics of $CO_2 $ Extinguishant Transfer According to the Nozzle Conditions of a Fixed Eire System (고정식 소화장치 노즐조건에 따른 $CO_2 $전달특성)

  • 박찬수;최주석;전철균
    • Fire Science and Engineering
    • /
    • v.18 no.2
    • /
    • pp.41-48
    • /
    • 2004
  • We have conducted a numerical simulation under three-dimensional unsteady conditions in order to analyze the characteristics of $CO_2 $;, extinguishant transfer by varying the location of the injection nozzle, which affects the effect of a $CO_2 $;, fire fighting system used in the form of fixed systems for the marine engine room. Flow fields and $CO_2 $;, concentration fields were measured according to the location of the injection nozzle. In the case of arranging the injection nozzle on the center of the ceiling, the low-normal concentration distribution was developed along the $CO_2 $;, jet due to the downward flow created by impinging ceiling jets in the symmetric plane. The concentration line reaches its peak due to the mass transfer of $CO_2 $;, at the comer.

Performance Characteristics of Air Driven Ejector According to the Position Changes and the Shape of Driving Nozzle (공기구동 이젝터의 노즐 형상과 위치 변화에 따른 성능 특성)

  • Ji, Myoung-Kuk;Kim, Pil-Hwan;Park, Ki-Tae;Utomo, Tony;Chung, Han-Shik;Jeong, Hyo-Min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.550-556
    • /
    • 2008
  • The aim of this research is to analyze the influence of motive pressure, driving nozzle position and nozzle throat ratio on the performance of ejector. The experiment was conducted in the variation of motive pressure of 0.196, 0.294, 0.392 and 0.490MPa respectively. The position of driving nozzle was varied in difference locations according to mixing tube diameter(0.5d, 1d, 2d, 3d, 4.15d, 5d and 6d). The experimental results show when the nozzle outlet is located at 3d, the flow characteristics change abruptly. It is shown that the suction flow rate and pressure lift ratio of ejector is influenced by the driving nozzle position. At nozzle position location of the Id of mixing tube diameter the performance of ejector gives the best performance.