• Title/Summary/Keyword: nozzle geometry

Search Result 202, Processing Time 0.021 seconds

Numerical Study on Bubble Growth and Droplet Ejection in a Bubble Inkjet Printer (버블 잉크젯에서의 기포성장 및 액적분사에 관한 수치적 연구)

  • Suh, Young-Ho;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1107-1116
    • /
    • 2006
  • The droplet ejection process driven by an evaporating bubble in a thermal inkjet printhead is investigated by numerically solving the conservation equations for mass, momentum and energy. The phase interfaces are tracked by a level set method which is modified to include the effect of phase change at the interface and extended for multiphase flows with irregular solid boundaries. The compressibility effect of a bubble is also included in the analysis to appropriately describe the bubble expansion behaviour associated with the high pressure caused by bubble nucleation. The whole process of bubble growth and collapse as well as droplet ejection during thermal inkjet printing is simulated without employing a simplified semi-empirical bubble growth model. Based on the numerical results, the jet breaking and droplet formation behaviour is observed to depend strongly on the bubble growth and collapse pattern. Also, the effects of liquid viscosity, surface tension and nozzle geometry are quantified from the calculated bubble growth rate and ink droplet ejection distance.

A PARAMETRIC STUDY OF CONICAL FRUSTUM GEOMETRY FOR IMPROVEMENT OF COOLING PERFORMANCE OF VORTEX TUBE (Vortex Tube 성능 개선을 위한 절두체의 형상 매개변수에 대한 연구)

  • Koo, H.B.;Park, J.Y.;Sohn, D.Y.;Choi, Y.H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.7-13
    • /
    • 2015
  • Vortex tube is a thermal static device that separates compressed air into hot and cold streams. In general, the cooling efficiency of vortex tubes is lower than that of traditional air conditioning equipment and vortex tubes are mainly used for industrial spot cooling applications because of their quick responses. In this study, conical frustums are employed in the nozzle chamber to improve the cooling performance. Conical frustums can be used to decrease the ineffective mass fraction that directly passes through the cold exit without energy separation. The shape optimization of conical frustums has been performed using full factorial design. It is found that the height of frustums has the largest main effects on the cooling performance. Computational results show that the cooling performance can be increased by about 10% within the considered range of the design parameters. This is because the ineffective mass fraction toward the cold exit is decreased by about 20%.

Effects of a Flow Guide on the Arcing History in a Thermal Puffer Plasma Chamber (유동 가이드가 열파퍼 플라즈마 챔버의 아크현상 이력에 미치는 영향)

  • Lee, Jong-Chul;Kim, Youn-Jea
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.832-839
    • /
    • 2007
  • The geometry and dimensions of an expansion chamber are decisive factors in thermal puffer plasma chamber designs. Because they together dominate the temperature and speed at which the cooling gas from the chamber flows back through a flow channel to the arcing zone for the successful interruption of fault currents. In this study, we calculated the flow and mass transfer driven by arc plasma, and investigated the effects of a flow guide installed inside a thermal puffer plasma chamber. It is found that the existing cold gas of the chamber mixes with hot gases entrained from the arcing zone and is subjected to compression due to pressure build-up in the chamber. The pressure build-up with the flow guide is larger than that without due to a vortex which rotates clockwise around the chamber center. By the reverse pressure gradient, the mixing gas of the chamber flows back out for cooling down the residual plasma near current zero. In the case with the flow guide, the temperature just before current zero is lower than that without, and the Cu concentration with high electrical conductivity is also less than that without the flow guide.

Theoretical and Experimental Study on a Spin-Stabilized Spherical Rocket (Spin 안정형 구형 로켓트에 관한 이론 및 실험적 연구)

  • Yi, Chong-Hoon
    • Journal of the military operations research society of Korea
    • /
    • v.3 no.1
    • /
    • pp.83-96
    • /
    • 1977
  • The combustion chamber and nozzle of an end burning, small spherical rocket is designed. A spherical external shape has a number of advantages such as fixed center-of-gravity and minimum aerodynamic precession torques during flight and a better mass distribution for gyro-stabilization as contrasted to a conventional ogive rocket shape. It is shown that the cross-sectional variation of the end burning solid propellant with length is an exponential geometry to provide a constant thrust-weight ratio of the rocket device during the propellant burning period, and that the factors which affect the attainment of the constant relationship of thrust to weight in the design are the initial propellant area, initial weight of the rocket and propellant density. The measurement of the transient thrust in the ground static test using black powder propellant supports the predicted results. A wind tunnel having a $30{\times}30{\times}75cm$ test section and Mach number 0.11 is constructed, and a simple balance-type device is designed for the measurement of the drag of a spinning sphere. The experimental results indicate that the. spinning has no effect on the magnitude of the drag up to the Reynolds number $3{\times}10^5$. Numerical computation of the flight trajectories for various launching angles is presented, and the gyro-stabilization of spinning sphere is discussed.

  • PDF

THE NUMERICAL SIMULATION OF HYDROGEN JET DIFFUSION FOR HYDROGEN LEAKAGE IN THE ENCLOSED GEOMETRY (밀폐공간에서 수소 누설로 인한 수소 제트 확산에 대한 수치해석)

  • Ahn, Hyuk-Jin;Lee, Sang-Hyuk;Hur, Nahm-Keon;Lee, Moon-Kyu;Yong, Gee-Joong
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.32-38
    • /
    • 2009
  • In the present study, a numerical simulation for the diffusion of hydrogen jet in a enclosure was performed to aid the leakage test of the hydrogen for the safety of the hydrogen vehicle. The temporal and spatial distributions of the hydrogen concentration in the test chamber are predicted from the present numerical analyses. Flammable region of 4-74% and explosive region of 18-59% hydrogen by volume was identified from the present results. Factors influencing the diffusion of the hydrogen jet were examined to evaluate the effectiveness of forced ventilation for relieving the accumulation of the leaked hydrogen gas in the chamber, which include location of open windows, size of leakage nozzle, and leakage rate among others. The distribution of the concentration of the leaked hydrogen for various cases can be used as a database in various applications for the hydrogen safety.

Study of the Shock Structure of Supersonic, Dual, Coaxial, Jets (초음속 이중 동축 제트유동에서 발생하는 충격파 구조에 관한 연구)

  • 이권희;이준희;김희동;박종호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.4
    • /
    • pp.94-101
    • /
    • 2001
  • The shock structure of dual coaxial jet is experimentally investigated. Eight different kinds of coaxial, dual nozzles are employed to observe the major features of the near field shock structure on the supersonic, coaxial, dual jets. Four convergent-divergent supersonic nozzles having the Mach number 2.0 and 3.0 are used to compare the coaxial jet flows discharging from two sonic nozzles. The primary pressure ratio is changed in the range between 1.0 and 10.0, and the assistant jet ratio from 1.0 to 4.0. The results show that the impinging angle, nozzle geometry and pressure ratio significantly affect the near field shock structure, Mach disk location and Mach disk diameter.

  • PDF

Effect of low H2 content in natural gas on the Combustion Characteristics of Gas Turbine (천연가스 내 미량의 수소함량이 가스터빈의 연소특성에 미치는 영향)

  • Lee, Min Chul;Park, Seik;Kim, Sungchul;Yoon, Jisoo;Joo, Sungpeel;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.109-110
    • /
    • 2013
  • This paper describes gas turbine combustion characteristics of synthetic natural gas which contains a small amount hydrogen content. By conducting ambient pressure high temperature combustion test at gas turbine relevant combustor geometry, the combustion characteristics such as combustion instability, NOx and CO emission, temperatures at turbine inlet, nozzle and dump plane, and flame structure from high speed OH chemiluminescence images were investigated when changing hydrogen content from zero to 5%. From the results, qualitative and quantitative relationships are derived between key aspects of combustion performance, notably NOx/CO emission and combustion instability. Natural gas containing hydrogen up to 5% does not show significant difference in view of all combustion characteristics except combustion instability. Only up to 1% hydrogen addition could not change the pressure fluctuation and phase gas between fluctuations of pressure and heat release. From the results, it can be concluded that synthetic national gas which contains 1% of hydrogen can be guaranteed for the stable and reliable operation of natural gas firing gas turbine.

  • PDF

Development of a Lightweight Prediction Model of Fuel Injection Rates from High Pressure Fuel Injectors (고압 인젝터의 분사율 예측을 위한 경량 모델 개발)

  • Lee, Sanggwon;Bae, Gyuhan;Atac, Omer Faruk;Moon, Seoksu;Kang, Jinsuk
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.188-195
    • /
    • 2020
  • To meet stringent emission regulations of automotive engines, fuel injection control techniques have advanced based on reliable and fast computing prediction models. This study aims to develop a reliable lightweight prediction model of fuel injection rates using a small number of input parameters and based on simple fluid dynamic theories. The prediction model uses the geometry of the injector nozzle, needle motion data, injection conditions and the fuel properties. A commercial diesel injector and US No. 2 diesel were used as the test injector and fuel, respectively. The needle motion data were measured using X-ray phase-contrast imaging technique under various fuel injection pressures and injection pulse durations. The actual injector rate profiles were measured using an injection rate meter for the validation of the model prediction results. In the case of long injection durations with the steady-state operation, the model prediction results showed over 99 % consistency with the measurement results. However, in the case of short injection cases with the transient operation, the prediction model overestimated the injection rate that needs to be further improved.

Design of the miniature Joule-Thomson refrigerator as a cryoprobe (저온 수술 프로브용 소형 Joule-Thomson 냉동기의 설계)

  • Hwang, Gyu-Wan;Jeong, Sang-Kwon;In, Se-Hwan
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.86-90
    • /
    • 2007
  • The cryoprobe used in cryosurgery should be fabricated in milimeter-order size for its practical usage. In general a miniature J-T(Joule-Thomson) refrigerator is applied to a cryoprobe. In case of the miniature J-T refrigerator, the mass flow rate of working fluid is small due to considerable friction in a minute flow path. For that reason, the miniature J-T refrigerator has a limited cooling power. To obtain the large cooling power from the J-T refrigerator, the refrigerator should have large mass flow rate and effective J-T temperature drop. These quantities are closely related to the geometry of the heat exchanger and the expansion nozzle in a cryoprobe, and are contradictory. The large mass flow rate leads to the small J-T temperature drop and vice versa in the miniature J-T refrigerator. Therefore, the optimal design of a cryoprobe to achieve maximum cooling power at fixed tube size and fixed operating temperature is required. This paper presents the design procedure of such case.

A numerical study on the aerodynamic characteristics of a variable geometry throttle valve(VGTV) system controlling air-flow rate (유량 제어장치인 가변스로틀밸브의 기하학적 형상변화에 따른 공기역학 특성분석 연구)

  • Cho, Hyun-Sung;Kim, Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.378-383
    • /
    • 2013
  • A butterfly throttle valve has been used to control the brake power of an SI engine by controlling the mass flow-rate of intake air in the induction system. However, the valve has a serious effect on the volumetric efficiency of the engine due to the pressure resistance in the induction system. In this study, a new intake air controlling valve named "Variable Geometry Throttle Valve(VGTV)" is proposed to minimize the pressure resistance in the intake system of an SI engine. The design concept of VGTV is on the application of a venturi nozzle in the air flow path. Instead of change of the butterfly valve angle in the airflow field, the throat width of the VGTV valve is varied with the operating condition of an SI engine. In this numerical study, CFD(computational fluid dynamics) simulation technique was incorporated to have an aerodynamics performance analysis of the two air flow controlling systems; butterfly valve and VGTV and compared the results to know which system has lower pressure resistance in the air intake system. From the result, it was found that VGTV has lower pressure resistance than the butterfly valve. Especially VGTV is effective on the low and medium load operating condition of an SI engine. The averaged pressure resistance of VGTV is about 49.0% lower than the value of the conventional butterfly throttle valve.