• Title/Summary/Keyword: novel species

Search Result 762, Processing Time 0.023 seconds

Genomic Insights of Weissella jogaejeotgali FOL01 Reveals Its Food Fermentation Ability and Human Gut Adaptive Potential for Probiotic Applications in Food Industries

  • Ku, Hye-Jin;Kim, You-Tae;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.943-946
    • /
    • 2017
  • Although the genus Leuconostoc, generally found in various fermented foods, has often been suggested to be a novel probiotic for food fermentation and health promotion, the strains in this genus showed low acid tolerance and low osmotic stress resistance activities, which are required for survival during food fermentation events. Recently, a novel species of Weissella, W. jogaejeotgali $FOL01^T$ (= KCCM 43128 = JCM 30580), was isolated from Korean fermented clams. To determine the genomic features of this new species, its genome was completely sequenced and analyzed. The genome consists of a circular chromosome of 2,114,163 bp of DNA with a G+C content of 38.8%, and the plasmid pFOL01 consists of 35,382 bp of DNA with a G+C content of 39.1%. The genome analysis showed its potential for use in food fermentation and osmotic stress resistance abilities for processing in food industries. In addition, this strain was predicted to have acid tolerance and adhesion to the mucosal layer for survival and colonization in the gut. Subsequent experiments substantiated these abilities, suggesting that W. jogaejeotgali may have probiotic potential and a high survival rate during food fermentation. Therefore, it may be suitable as a novel probiotic strain for various applications in food industries.

Novel Dioxygenases, HIF-α Specific Prolyl-hydroxylase and Asparanginyl-hydroxylase: O2 Switch for Cell Survival

  • Park, Hyun-Sung
    • Toxicological Research
    • /
    • v.24 no.2
    • /
    • pp.101-107
    • /
    • 2008
  • Studies on hypoxia-signaling pathways have revealed novel Fe(II) and $\alpha$-ketoglutarate-dependent dioxygenases that hydroxylate prolyl or asparaginyl residues of a transactivator, Hypoxia-Inducible $Factor-\alpha(HIF-\alpha)$ protein. The recognition of these unprecedented dioxygenases has led to open a new paradigm that the hydroxylation mediates an instant post-translational modification of a protein in response to the changes in cellular concentrations of oxygen, reducing agents, or $\alpha$-ketoglutarate. Activity of $HIF-\alpha$ is repressed by two hydroxylases. One is $HIF-\alpha$ specific prolyl-hydroxylases, referred as prolyl-hydroxylase domain(PHD). The other is $HIF-\alpha$ specific asparaginyl-hydroxylase, referred as factor-inhibiting HIF-1(FIH-1). The facts (i) that many dioxygenases commonly use molecular oxygen and reducing agents during detoxification of xenobiotics, (ii) that detoxification reaction produces radicals and reactive oxygen species, and (iii) that activities of both PHD and FIH-1 are regulated by the changes in the balance between oxygen species and reducing agents, imply the possibility that the activity of $HIF-\alpha$ can be increased during detoxification process. The importance of $HIF-\alpha$ in cancer and ischemic diseases has been emphasized since its target genes mediate various hypoxic responses including angiogenesis, erythropoiesis, glycolysis, pH balance, metastasis, invasion and cell survival. Therefore, activators of PHDs and FIH-1 can be potential anticancer drugs which could reduce the activity of HIF, whereas inhibitors, for preventing ischemic diseases. This review highlights these novel dioxygenases, PHDs and FIH-1 as specific target against not only cancers but also ischemic diseases.

Novel Qnr Families as Conserved and Intrinsic Quinolone Resistance Determinants in Aeromonas spp.

  • Sang-Gyu Kim;Bo-Eun Kim;Jung Hun Lee;Dae-Wi Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1276-1286
    • /
    • 2024
  • The environment has been identified as an origin, reservoir, and transmission route of antibiotic resistance genes (ARGs). Among diverse environments, freshwater environments have been recognized as pivotal in the transmission of ARGs between opportunistic pathogens and autochthonous bacteria such as Aeromonas spp. In this study, five environmental strains of Aeromonas spp. exhibiting multidrug resistance (MDR) were selected for whole-genome sequencing to ascertain their taxonomic assignment at the species-level and to delineate their ARG repertoires. Analyses of their genomes revealed the presence of one protein almost identical to AhQnr (A. hydrophila Qnr protein) and four novel proteins similar to AhQnr. To scrutinize the classification and taxonomic distribution of these proteins, all Aeromonas genomes deposited in the NCBI RefSeq genome database (1,222 genomes) were investigated. This revealed that these Aeromonas Qnr (AQnr) proteins are conserved intrinsic resistance determinants of the genus, exhibiting species-specific diversity. Additionally, structure prediction and analysis of contribution to quinolone resistance by AQnr proteins of the isolates, confirmed their functionality as quinolone resistance determinants. Given the origin of mobile qnr genes from aquatic bacteria and the crucial role of Aeromonas spp. in ARG dissemination in aquatic environments, a thorough understanding and strict surveillance of AQnr families prior to the clinical emergence are imperative. In this study, using comparative genome analyses and functional characterization of AQnr proteins in the genus Aeromonas, novel Aeromonas ARGs requiring surveillance has suggested.

Influence of a Novel Mold Inhibitor on Mechanical Properties and Water Repellency of Bamboo Fiber-based Composites

  • Qi, Yue;Huang, Yu-Xiang;Ma, Hong-Xia;Yu, Wen-Ji;Kim, Nam-Hun;Zhang, Ya-Hui
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.336-343
    • /
    • 2019
  • Effects of a novel mold inhibitor specifically for bamboo, on the properties of composite products have been confirmed in this study. The mechanical and dimensional stability properties of bamboo fiber-based composites (BFBCs) from different bamboo species were also investigated. The results showed that Burmanica Gamble possessed the highest values of modulus of elasticity (MOE) of 33.2 GPa, modulus of rupture (MOR) of 286.9 MPa, compressive strength of 182.6 MPa and shear strength of 24.0 MPa. By contrast, Phyllostochys heterocycla among all of species showed the lowest MOE of 16.3 GPa, MOR of 170.3 MPa and compressive strength of 128.9 MPa were the lowest among all of species. Moreover, there is a remarkable variation in the swelling and water absorption between the samples with 4 h and 28 h water immersion treatment, especially Phyllostachys iridenscens. Overall, the results suggested that TCIT (Tebuconazole and 3(2H)-isothiazolone) had no significant effect on the mechanical properties compared with the control condition, and it would be utilized as an antimould of BFBCs manufacturing.

Mucilaginibacter aquariorum sp. nov., Isolated from Fresh Water

  • Ve Van Le;So-Ra Ko;Mingyeong Kang;Hee-Mock Oh;Chi-Yong Ahn
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1553-1560
    • /
    • 2022
  • A Gram-stain-negative, rod-shaped bacterial strain, JC4T, was isolated from a freshwater sample and determined the taxonomic position. Initial identification based on 16S rRNA gene sequences revealed that strain JC4T is affiliated to the genus Mucilaginibacter with a sequence similarity of 97.97% to Mucilaginibacter rigui WPCB133T. The average nucleotide identity and digital DNA-DNA hybridization values between strain JC4T and Mucilaginibacter species were estimated below 80.92% and 23.9%, respectively. Strain JC4T contained summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) and iso-C15:0 as predominant cellular fatty acids. The dominant polar lipids were identified as phosphatidylethanolamine, one unidentified aminophospholipid, one unidentified phospholipid, and two unidentified lipids. The respiratory quinone was MK-7. The genomic DNA G+C content of strain JC4T was determined to be 42.44%. The above polyphasic evidences support that strain JC4T represents a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter aquariorum sp. nov. is proposed. The type strain is JC4T (= KCTC 92230T = LMG 32715T).

Construction of a Novel Shuttle Vector for Tetragenococcus species based on a Cryptic Plasmid from Tetragenococcus halophilus

  • Min Jae Kim;Tae Jin Kim;Yun Ji Kang;Ji Yeon Yoo;Jeong Hwan Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.211-218
    • /
    • 2023
  • A cryptic plasmid (pTH32) was characterized from Tetragenococcus halophilus 32, an isolate from jeotgal, Korean traditional fermented seafood. pTH32 is 3,198 bp in size with G+C content of 35.84%, and contains 4 open reading frames (ORFs). orf1 and orf2 are 456 bp and 273 bp in size, respectively, and their translation products showed 65.16% and 69.35% similarities with RepB family plasmid replication initiators, respectively, suggesting the rolling-circle replication (RCR) mode of pTH32. orf3 and orf4 encodes putative hypothetical protein of 186 and 76 amino acids, respectively. A novel Tetragenococcus-Escherichia coli shuttle vector, pMJ32E (7.3 kb, Emr), was constructed by ligation of pTH32 with pBluescript II KS(+) and an erythromycin resistance gene (ErmC). pMJ32E successfully replicated in Enterococcus faecalis 29212 and T. halophilus 31 but not in other LAB species. A pepA gene, encoding aminopeptidase A (PepA) from T. halophilus CY54, was successfully expressed in T. halophilus 31 using pMJ32E. The transformant (TF) showed higher PepA activity (49.8 U/mg protein) than T. halophilus 31 cell (control). When T. halophilus 31 TF was subculturd in MRS broth without antibiotic at 48 h intervals, 53.8% of cells retained pMJ32E after 96 h, and only 2.4% of cells retained pMJ32E after 14 days, supporting the RCR mode of pTH32. pMJ32E could be useful for the genetic engineering of Tetragenococcus and Enterococcus species.

Isolation, Characterization and Whole-Genome Analysis of Paenibacillus andongensis sp.nov. from Korean Soil

  • Yong Guan;Zhun Li;Yoon-Ho Kang;Mi-Kyung Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.753-759
    • /
    • 2023
  • The genus Paenibacillus contains a variety of biologically active compounds that have potential applications in a range of fields, including medicine, agriculture, and livestock, playing an important role in the health and economy of society. Our study focused on the bacterium SS4T (KCTC 43402T = GDMCC 1.3498T), which was characterized using a polyphasic taxonomic approach. This strain was analyzed using antiSMASH, BAGEL4, and PRISM to predict the secondary metabolites. Lassopeptide clusters were found using all three analysis methods, with the possibility of secretion. Additionally, PRISM found three biosynthetic gene clusters (BGC) and predicted the structure of the product. Genome analysis indicated that glucoamylase is present in SS4T. 16S rRNA sequence analysis showed that strain SS4T most closely resembled Paenibacillus marchantiophytorum DSM 29850T (98.22%), Paenibacillus nebraskensis JJ-59T (98.19%), and Paenibacillus aceris KCTC 13870T (98.08%). Analysis of the 16S rRNA gene sequences and Type Strain Genome Server (TYGS) analysis revealed that SS4T belongs to the genus Paenibacillus based on the results of the phylogenetic analysis. As a result of the matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/MS) results, SS4T was determined to belong to the genus Paenibacillus. Comparing P. marchantiophytorum DSM 29850T with average nucleotide identity (ANI 78.97%) and digital DNA-DNA hybridization (dDDH 23%) revealed values that were all less than the threshold for bacterial species differentiation. The results of this study suggest that strain SS4T can be classified as a Paenibacillus andongensis species and is a novel member of the genus Paenibacillus.

Comparative Genome analysis of the Genus Curvibacter and the Description of Curvibacter microcysteis sp. nov. and Curvibacter cyanobacteriorum sp. nov., Isolated from Fresh Water during the Cyanobacterial Bloom Period

  • Ve Van Le;So-Ra Ko;Mingyeong Kang;Seonah Jeong;Hee-Mock Oh;Chi-Yong Ahn
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1428-1436
    • /
    • 2023
  • The three Gram-negative, catalase- and oxidase-positive bacterial strains RS43T, HBC28, and HBC61T, were isolated from fresh water and subjected to a polyphasic study. Comparison of 16S rRNA gene sequence initially indicated that strains RS43T, HBC28, and HBC61T were closely related to species of genus Curvibacter and shared the highest sequence similarity of 98.14%, 98.21%, and 98.76%, respectively, with Curvibacter gracilis 7-1T. Phylogenetic analysis based on genome sequences placed all strains within the genus Curvibacter. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the three strains and related type strains supported their recognition as two novel genospecies in the genus Curvibacter. Comparative genomic analysis revealed that the genus possessed an open pangenome. Based on KEGG BlastKOALA analyses, Curvibacter species have the potential to metabolize benzoate, phenylacetate, catechol, and salicylate, indicating their potential use in the elimination of these compounds from the water systems. The results of polyphasic characterization indicated that strain RS43T and HBC61T represent two novel species, for which the name Curvibacter microcysteis sp. nov. (type strain RS43T =KCTC 92793T=LMG 32714T) and Curvibacter cyanobacteriorum sp. nov. (type strain HBC61T =KCTC 92794T=LMG 32713T) are proposed.

Computational Identification and Comparative Analysis of Secreted and Transmembrane Proteins in Six Burkholderia Species

  • Nguyen, Thao Thi;Lee, Hyun-Hee;Park, Jungwook;Park, Inmyoung;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.33 no.2
    • /
    • pp.148-162
    • /
    • 2017
  • As a step towards discovering novel pathogenesis-related proteins, we performed a genome scale computational identification and characterization of secreted and transmembrane (TM) proteins, which are mainly responsible for bacteria-host interactions and interactions with other bacteria, in the genomes of six representative Burkholderia species. The species comprised plant pathogens (B. glumae BGR1, B. gladioli BSR3), human pathogens (B. pseudomallei K96243, B. cepacia LO6), and plant-growth promoting endophytes (Burkholderia sp. KJ006, B. phytofirmans PsJN). The proportions of putative classically secreted proteins (CSPs) and TM proteins among the species were relatively high, up to approximately 20%. Lower proportions of putative type 3 non-classically secreted proteins (T3NCSPs) (~10%) and unclassified non-classically secreted proteins (NCSPs) (~5%) were observed. The numbers of TM proteins among the three clusters (plant pathogens, human pathogens, and endophytes) were different, while the distribution of these proteins according to the number of TM domains was conserved in which TM proteins possessing 1, 2, 4, or 12 TM domains were the dominant groups in all species. In addition, we observed conservation in the protein size distribution of the secreted protein groups among the species. There were species-specific differences in the functional characteristics of these proteins in the various groups of CSPs, T3NCSPs, and unclassified NCSPs. Furthermore, we assigned the complete sets of the conserved and unique NCSP candidates of the collected Burkholderia species using sequence similarity searching. This study could provide new insights into the relationship among plant-pathogenic, humanpathogenic, and endophytic bacteria.

Infection and cox2 sequence of Pythium chondricola (Oomycetes) causing red rot disease in Pyropia yezoensis (Rhodophyta) in Korea

  • Lee, Soon Jeong;Jee, Bo Young;Son, Maeng-Hyun;Lee, Sang-Rae
    • ALGAE
    • /
    • v.32 no.2
    • /
    • pp.155-160
    • /
    • 2017
  • Red rot disease has caused a major decline in Pyropia (Nori) crop production in Korea, Japan, and China. To date, only Pythium porphyrae (Pythiales, Oomycetes) has been reported as the pathogen causing red rot disease in Pyropia yezoensis (Rhodophyta, Bangiales). Recently, Pythium chondricola was isolated from the infected blades of Py. yezoensis during molecular analyses using the mitochondrial cox1 region. In this study, we evaluated the pathogenicity of P. chondricola as an algal pathogen of Py. yezoensis. Moreover, a new cox2 marker was developed with high specificity for Pythium species. Subsequent to re-inoculation, P. chondricola successfully infected Py. yezoensis blades, with the infected regions containing symptoms of red rot disease. A novel cox2 marker successfully isolated the cox2 region of Pythium species from the infected blades of Py. yezoensis collected from Pyropia aquaculture farms. cox2 sequences showed 100% identity with that of P. chondricola (KJ595354) and 98% similarity with that of P. porphyrae (KJ595377). The results of the pathogenicity test and molecular analysis confirm that P. chondricola is a new algal pathogen causing red rot disease in Pyropia species. Moreover, it could also suggest the presence of cryptic biodiversity among Korean Pythium species.