• Title/Summary/Keyword: novel lipase

Search Result 56, Processing Time 0.03 seconds

Inhibition Effects of Galla Chinenisis Extract on Adipocyte Differentiation in OP9 Cells (오미자 추출물의 지방세포 분화 억제 효과)

  • Park, Sun-Young;Hwang, Hong-Yeon;Seo, Eun-A;Kwon, Kang-Beom;Ryu, Do-Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.455-461
    • /
    • 2012
  • Obesity is associated with numerous diseases such as type 2 diabetes, hypertension and cancer. Inhibition of adipogenesis is a effectite strategy to anti-obesity. In this study, Galla Chinenisis extract (GCE) inhibited adipocyte differentiation in OP9 cells. There was no cytotoxicity when cells were treated with GCE in designated time intervals, unaffected by concentration. In this cell model, increases in fat storage were inhibited by 2 days treatment with various concentration of GCE, visualized by Oil red-O, BODIPY and DAPI staining. To understand the underlying mechanism at the molecular level, the effects of GCE were examined on the expression of the genes involved in adipogenesis by real-time PCR. In the progress of adipocyte differentiation with GCE-treated, the mRNA level of adipogenic genes such as peroxisome-proliferator-activated receptors gamma ($PPAR{\gamma}$), computer-assisted axial tomography/enhancer binding protein-alpha ($C/EBP{\alpha}$) were decreased. Also, GCE treatment inhibited increase of mRNA expression, which is adipogenic factor such as fatty acid synthase (FAS), hormone-sensitve lipase (HSL), lipoprotein lipase (LPL), and adipocyte-specific lipid binding protein (aP2). Therefore, the result of this study suggest that Galla Chinenisis extract can prevent adipocyte differentiation and GCE may have a great potential as a novel anti-adipogenic agent.

Lipase-catalyzed Transesterification in Several Reaction Systems: An Application of Room Temperature Ionic Liquids for Bi-phasic Production of n-Butyl Acetate

  • Park Suk-Chan;Chang Woo-Jin;Lee Sang-Mok;Kim Young-Jun;Koo Yoon-Mo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.99-102
    • /
    • 2005
  • Organic solvents are widely used in biotransformation systems. There are many efforts to reduce the consumption of organic solvents because of their toxicity to the environment and human health. In recent years, several groups have started to explore novel organic solvents called room temperature ionic liquids in order to substitute conventional organic solvents. In this work, lipase-catalyzed transesterification in several uni- and bi-phasic systems was studied. Two representative hydrophobic ionic liquids based on 1-butyl-3-methylimidazolum coupled with hexafluorophosphate ([BMIM][$PF_6$]) and bis[{trifluoromethylsulfonyl} imide] ([BMIM] [$Tf_{2}N$]) were employed as reaction media for the transesterification of n-butanol. The commercial lipase, Novozym 435, was used for the transesterification reaction with vinyl acetate as an acyl donor. The conversion yield was increased around $10\%$ in a water/[BMIM][$Tf_{2}N$] bi-phasic system compared with that in a water/hexane system. A higher distribution of substrates into the water phase is believed to enhance the conversion yield in a water/[BMIM][$Tf_{2}N$] system. Partition coefficients of the substrates in the water/[BMIM][$Tf_{2}N$] bi-phasic system were higher than three times that found in the water/hexane system, while n-butyl acetate showed a similar distribution in both systems. Thus, RTILs appear to be a promising substitute of organic solvents in some biotransformation systems.

Identification and Characterization of a Novel Thermostable GDSL-Type Lipase from Geobacillus thermocatenulatus

  • Jo, Eunhye;Kim, Jihye;Lee, Areum;Moon, Keumok;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.483-491
    • /
    • 2021
  • Two putative genes, lip29 and est29, encoding lipolytic enzymes from the thermophilic bacterium Geobacillus thermocatenulatus KCTC 3921 were cloned and overexpressed in Escherichia coli. The recombinant Lip29 and Est29 were purified 67.3-fold to homogeneity with specific activity of 2.27 U/mg and recovery of 5.8% and 14.4-fold with specific activity of 0.92 U/mg and recovery of 1.3%, respectively. The molecular mass of each purified enzyme was estimated to be 29 kDa by SDS-PAGE. The alignment analysis of amino acid sequences revealed that both enzymes belonged to GDSL lipase/esterase family including conserved blocks with SGNH catalytic residues which was mainly identified in plants before. While Est29 showed high specificity toward short-chain fatty acids (C4-C8), Lip29 showed strong lipolytic activity to long-chain fatty acids (C12-C16). The optimal activity of Lip29 toward p-nitrophenyl palmitate as a substrate was observed at 50℃ and pH 9.5, respectively, and its activity was maintained more than 24 h at optimal temperatures, indicating that Lip29 was thermostable. Lip29 exhibited high tolerance against detergents and metal ions. The homology modeling and substrate docking revealed that the long-chain substrates showed the greatest binding affinity toward enzyme. Based on the biochemical and insilico analyses, we present for the first time a GDSL-type lipase in the thermophilic bacteria group.

A novel method for the synthesis of nano-magnetite particles

  • Syahmazgi, Maryam Ghodrati;Falamaki, Cavus;Lotfi, Abbas Sahebghadam
    • Advances in nano research
    • /
    • v.2 no.2
    • /
    • pp.89-98
    • /
    • 2014
  • A novel and simple method for the synthesis of nano-magnetite particles is disclosed. In the novel procedure, $Fe^{2+}$ is the only source of metal cation. Carboxymethylcellulose (CMC) is used as the structure directing agent. The phase analysis of the nano-particles was performed using XRD and electron diffraction techniques. Size and morphology analysis was performed using light scattering and TEM techniques. The effect of $NH_4OH$ solution (32 wt. %) at different CMC concentrations on the size distribution of the final magnetite powders is studied. An optimal base concentration exists for each CMC concentration leading to minimal agglomeration. There exists a minimum CMC concentration (0.0016 wt. %), lower than that no magnetite forms. It is shown that using the new method, it is possible to immobilize a lipase enzyme (Candida Rugosa) with immobilization efficiency larger than 98 % with a loading more than 3 times the reported value in the literature. The latter phenomenon is explained based on the agglomerate state of the nano-particles in the liquid phase.

Production, Immobilization, and Characterization of Croceibacter atlanticus Lipase Isolated from the Antarctic Ross Sea (남극 로스해에서 분리한 Croceibacter atlanticus균 유래 리파아제의 생산, 고정화, 효소특성 연구)

  • Park, Chae Gyeong;Kim, Hyung Kwoun
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.3
    • /
    • pp.234-243
    • /
    • 2018
  • The Antarctic Ocean contains numerous microorganisms that produce novel biocatalysts that can have applications in various industries. We screened various psychrophilic bacterial strains isolated from the Ross Sea and found that a Croceibacter atlanticus strain (Stock No. 40-F12) showed high lipolytic activity on a tributyrin plate. We isolated the corresponding lipase gene (lipCA) by shotgun cloning and expressed the LipCA enzyme in Escherichia coli cells. Homology modeling of LipCA was carried out using the Spain Arreo lake metagenome alpha/beta hydrolase as a template. According to the model, LipCA has an ${\alpha}/{\beta}$ hydrolase fold, Gly-X-Ser-X-Glymotif, and lid sequence, indicating that LipCA is a typical lipase enzyme. Active LipCA enzyme was purified fromthe cell-free extract by ammonium sulfate precipitation and gel filtration chromatography. We determined its enzymatic properties including optimum temperature and pH, stability, substrate specificity, and organic solvent stability. LipCA was immobilized by the cross-linked enzyme aggregate (CLEA) method and its enzymatic properties were compared to those of free LipCA. After cross-linking, temperature, pH, and organic solvent stability increased considerably, whereas substrate specificities did not changed. The LipCA CLEA was recovered by centrifugation and showed approximately 40% activity after 4th recovery. This is the first report of the expression, characterization, and immobilization of a C. atlanticus lipase, and this lipase could have potential industrial application.

A novel cold-active lipase from Psychrobacter sp. ArcL13: gene identification, expression in E. coli, refolding, and characterization (새로운 Psychrobacter sp. ArcL13 유래 저온활성 지질분해효소 : 유전자 분리동정, 대장균에서의 발현, refolding 및 특성 연구)

  • Koo, Bon-Hun;Moon, Byung-Hern;Shin, Jong-Suh;Yim, Joung-Han
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.192-201
    • /
    • 2016
  • Recently, Psychrobacter sp. ArcL13 strain showing the extracellular lipase activity was isolated from the Chuckchi Sea of the Arctic Ocean. However, due to the low expression levels of the enzyme in the natural strain, the production of recombinant lipase is crucial for various applications. Identification of the gene for the enzyme is prerequisite for the production of the recombinant protein. Therefore, in the present study, a novel lipase gene (ArcL13-Lip) was isolated from Psychrobacter sp. ArcL13 strain by gene prospecting using PCR, and its complete nucleotide sequence was determined. Sequence analysis showed that ArcL13-Lip has high amino acid sequence similarity to lipases from bacteria of some Psychrobacter genus (84-90%) despite low nucleotide sequence similarity. The lipase gene was cloned into the bacterial expression plasmid and expressed in E. coli. SDS-PAGE analysis of the cells showed that ArcL13-Lip was expressed as inclusion bodies with a molecular mass of about 35 kDa. Refolding was achieved by diluting the unfolded protein into refolding buffers containing various additives, and the highest refolding efficiency was seen in the glucose-containing buffer. Refolded ArcL13-Lip showed high hydrolytic activity toward p-nitrophenyl caprylate and p-nitrophenyl decanoate among different p-nitrophenyl esters. Recombinant ArcL13-Lip displayed maximal activity at $40^{\circ}C$ and pH 8.0 with p-nitrophenyl caprylate as a substrate. Activity assays performed at various temperatures showed that ArcL13-Lip is a cold-active lipase with about 40% and 73% of enzymatic activity at $10^{\circ}C$ and $20^{\circ}C$, respectively, compared to its maximal activity at $40^{\circ}C$.

Lipase-catalyzed esterification processing in natural polymer containing microemulsion-based organogel systems

  • Nagayama, Kazuhito;Imai, Masanao
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.187-190
    • /
    • 2004
  • Microemulsions gelled by the aid of natural polymers, i.e. microemulsion-based organogels (MBGs), have become of interest as novel tools for enzyme immobilization in hydrophobic solvents [1,2]. Sodium bis(2-ethylhexyl) sulfosuccinate (AOT)is frequently employed as an amphiphile for stable MBG formation.(omitted)

  • PDF

Molecular Cloning and Characterization of a Novel Cold-Adapted Family VIII Esterase from a Biogas Slurry Metagenomic Library

  • Cheng, Xiaojie;Wang, Xuming;Qiu, Tianlei;Yuan, Mei;Sun, Jianguang;Gao, Junlian
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1484-1489
    • /
    • 2014
  • A novel esterase gene, est01, was successfully unearthed from a biogas digester microbiota metagenomic library. The 1,194 bp est01 gene encodes a protein of 44,804 Da (designated Est01). The amino acid sequence of Est01 shows only moderate (33%) identity to a lipase/esterase. Phylogenetic analysis and biochemical characterization confirmed that Est01 is a new member of family VIII esterases. The purified Est01 from recombinant Escherichia coli BL21 (DE3) showed high hydrolytic activity against short-chain fatty acid esters, suggesting that it is a typical carboxylesterase rather than a lipase. Furthermore, the Est01 was even active at $10^{\circ}C$ (43% activity remained), with the optimal temperature at $20^{\circ}C$, and had a broad pH range from 5.0 to 10.0, with the optimal pH of 8.0. These properties suggest that Est01 is a cold-adaptive esterase and could have good potential for low-temperature hydrolysis application.