• 제목/요약/키워드: novel genes

검색결과 941건 처리시간 0.027초

Transcriptome Analysis of the Barley-Rhynchosporium secalis Interaction

  • Al-Daoude, Antonious;Shoaib, Amina;Al-Shehadah, Eyad;Jawhar, Mohammad;Arabi, Mohammad Imad Eddin
    • The Plant Pathology Journal
    • /
    • 제30권4호
    • /
    • pp.425-431
    • /
    • 2014
  • Leaf scald caused by the infection of Rhynchosporium secalis, is a worldwide crop disease resulting in significant loss of barley yield. In this study, a systematic sequencing of expressed sequence tags (ESTs) was chosen to obtain a global picture of the assembly of genes involved in pathogenesis. To identify a large number of plant ESTs, which are induced at different time points, an amplified fragment length polymorphism (AFLP) display of complementary DNA (cDNA) was utilized. Transcriptional changes of 140 ESTs were observed, of which 19 have no previously described function. Functional annotation of the transcripts revealed a variety of infection-induced host genes encoding classical pathogenesis-related (PR) or genes that play a role in the signal transduction pathway. The expression analyses by a semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) revealed that Rar1 and Rpg4 are defense inducible genes, and were consistent with the cDNA-AFLP data in their expression patterns. Hence, the here presented transcriptomic approach provides novel global catalogue of genes not currently represented in the EST databases.

CONSTRUCTING GENE REGULATORY NETWORK USING FREQUENT GENE EXPRESSION PATTERN MINING AND CHAIN RULES

  • Park, Hong-Kyu;Lee, Heon-Gyu;Cho, Kyung-Hwan;Ryu, Keun-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.623-626
    • /
    • 2006
  • Group of genes controls the functioning of a cell by complex interactions. These interacting gene groups are called Gene Regulatory Networks (GRNs). Two previous data mining approaches, clustering and classification have been used to analyze gene expression data. While these mining tools are useful for determining membership of genes by homology, they don't identify the regulatory relationships among genes found in the same class of molecular actions. Furthermore, we need to understand the mechanism of how genes relate and how they regulate one another. In order to detect regulatory relationships among genes from time-series Microarray data, we propose a novel approach using frequent pattern mining and chain rule. In this approach, we propose a method for transforming gene expression data to make suitable for frequent pattern mining, and detect gene expression patterns applying FP-growth algorithm. And then, we construct gene regulatory network from frequent gene patterns using chain rule. Finally, we validated our proposed method by showing that our experimental results are consistent with published results.

  • PDF

Gene repressive mechanisms in the mouse brain involved in memory formation

  • Yu, Nam-Kyung;Kaang, Bong-Kiun
    • BMB Reports
    • /
    • 제49권4호
    • /
    • pp.199-200
    • /
    • 2016
  • Gene regulation in the brain is essential for long-term plasticity and memory formation. Despite this established notion, the quantitative translational map in the brain during memory formation has not been reported. To systematically probe the changes in protein synthesis during memory formation, our recent study exploited ribosome profiling using the mouse hippocampal tissues at multiple time points after a learning event. Analysis of the resulting database revealed novel types of gene regulation after learning. First, the translation of a group of genes was rapidly suppressed without change in mRNA levels. At later time points, the expression of another group of genes was downregulated through reduction in mRNA levels. This reduction was predicted to be downstream of inhibition of ESR1 (Estrogen Receptor 1) signaling. Overexpressing Nrsn1, one of the genes whose translation was suppressed, or activating ESR1 by injecting an agonist interfered with memory formation, suggesting the functional importance of these findings. Moreover, the translation of genes encoding the translational machineries was found to be suppressed, among other genes in the mouse hippocampus. Together, this unbiased approach has revealed previously unidentified characteristics of gene regulation in the brain and highlighted the importance of repressive controls.

Antimicrobial Resistance and Virulence Genes Presence in Escherichia coli Strains Isolated from Gomso Bay, Korea

  • Park, Kwon-Sam
    • Fisheries and Aquatic Sciences
    • /
    • 제16권4호
    • /
    • pp.221-227
    • /
    • 2013
  • In total, 131 Escherichia coli isolates from surface seawater of the Gomso Bay, of Korea, were analyzed for their susceptibility to 22 different antimicrobials and for genes associated with antimicrobial resistance and virulence. According to the disk diffusion susceptibility test, the resistance to tetracycline was most prevalent (33.6%), followed by that to ampicillin (22.1%), ticarcillin (22.1%), and trimethoprim (16.8%). More than 46.6% of the isolates were resistant to at least one antimicrobial, and 22.9% were resistant to three or more classes of antimicrobials; these were consequently defined as multidrug resistant. We further found that 29 ampicillin-resistant isolates possessed genes encoding TEM-type (93.1%) and SHV-type (6.9%) ${\beta}$-lactamases. Among the 44 tetracycline-resistant isolates, tetA and tetC were found in 35 (79.5%) and 19 (43.2%), respectively, whereas tetB was detected in only three isolates (6.8%). With regard to virulence genes, merely 0.8% (n = 1) and 2.3% (n = 3) of the isolates were positive for the enteroaggregative E. coli-associated plasmid (pCVD432) gene and the enteropathogenic E. coli-specific attaching and effacing (eae) gene, respectively. Overall, these results not only provide novel insight into the necessity for seawater sanitation in Gomso Bay, but they help reduce the risk of contamination of antimicrobial-resistant bacteria.

Phenotypic and Genetic Effects of Dwarfing Genes on Plant Height and Some Agronomic Traits in Wheat

  • Moon Seok Kim;Jin Seok Yoon;Yong Weon Seo
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.276-276
    • /
    • 2022
  • Wheat is one of the most widely grown food crops worldwide. Extreme precipitation and wind disturbances increased due to the abnormal climate, which resulted in increased lodging. Introduction of dwarf genes in wheat significantly increased lodging resistance and productivity in wheat breeding. In this study, we performed the genotyping of dwarfing genes between 'Keumkang' and 'Komac 5' ('Keumkang' mutant). In addition, we investigated the relationship between plant height and several phenotypic characters using F2 segregation populations derived from crosses between the two varieties. There was no significant difference in phenotypic characters between the two varieties except for plant height. In the genotyping analysis using dwarfing genes, mutations of two dwarfing gene were found to be induced between the two varieties. The four genotypes of the F2 populations from a crossing between 'Keumkang' and 'Komac 5' were used to compare and evaluate the effects of two dwarfing genes. Plants with two single mutant dwarfing gene and double mutant dwarfing gene revealed reduced plant heights than control plants by 4.5%, 6.9%, and 33.2%, respectively. The phenotype analysis showed that double mutant dwarfing gene affected wheat stem growth as the length decreases from the second node, resulting in decreased plant height. However, there were no significant differences in the agronomic traits between mutant plants and control plant. These results may provide novel information about the effect of double mutant dwarfing gene on plant height, and may help improve lodging tolerance and wheat yield.

  • PDF

Characterization of immune gene expression in rock bream (Oplegnathus fasciatus) kidney infected with rock bream iridovirus (RBIV) using microarray

  • Myung-Hwa Jung;Sung-Ju Jung
    • 한국어병학회지
    • /
    • 제36권2호
    • /
    • pp.191-211
    • /
    • 2023
  • Rock bream iridovirus (RBIV) causes high mortality and economic losses in rock bream (Oplegnathus fasciatus) aquaculture industry in Korea. Although, the immune responses of rock bream under RBIV infection have been studied, there is not much information at the different stages of infection (initial, middle and recovery). Gene expression profiling of rock bream under different RBIV infection stages was investigated using a microarray approaches. In total, 5699 and 6557 genes were significantly up- or down-regulated over 2-fold, respectively, upon RBIV infection. These genes were grouped into categories such as innate immune responses, adaptive immune responses, complements, lectin, antibacterial molecule, stress responses, DNA/RNA binding, energy metabolism, transport and cell cycle. Interestingly, hemoglobins (α and β) appears to be important during pathogenesis; it is highly up-regulated at the initial stage and is gradually decreased when the pathogen most likely multiplying and fish begin to die at the middle or later stage. Expression levels were re-elevated at the recovery stage of infection. Among up-regulated genes, interferon-related genes were found to be responsive in most stages of RBIV infection. Moreover, X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) expression was high, whereas expression of apoptosis-relate genes were low. In addition, stress responses were highly induced in the virus infection. The cDNA microarray data were validated using quantative real-time PCR. Our results provide novel inslights into the broad immune responses triggered by RBIV at different infection stages.

Molecular Characterization of the Ocular EST Clones from Olive Flounder, Paralichthys olivaceus

  • Lee, Jeong-Ho;Noh, Jae-Koo;Kim, Hyun-Chul;Park, Choul-Ji;Min, Byung-Hwa;Ha, Su-Jin;Park, Jong-Won;Kim, Young-Ok;Kim, Jong-Hyun;Kim, Kyung-Kil;Kim, Woo-Jin;Myeong, Jeong-In
    • 한국발생생물학회지:발생과생식
    • /
    • 제14권2호
    • /
    • pp.107-113
    • /
    • 2010
  • The olive flounder (Paralichthys olivaceus) is one of the most widely cultured flatfish in Korea and Japan. During development, in a process known as metamorphosis, this fish reorients itself to lie on one side, the body flattens, and the eye migrates to the other side of the body. However, few studies have focused on molecule regulation mechanism of eye development in olive flounder. To reveal the molecular mechanism of eye development, we performed the studies on identification of genes expressed in the eye of olive flounder using EST and RT-PCR strategy. A total of 270 ESTs were sequenced, and 178 (65.9%) clones were identified as known genes and 92 (34.1%) as unknown genes. Among the 178 EST clones, 29 (16.3%) clones were representing 9 unique genes identified as homologous to the previously reported olive flounder ESTs, 131 (73.6%) clones representing 107 unique genes were identified as orthologs of known genes from other organisms. We also identified a kind of eye development associated proteins, indicating EST as a powerful method for identifying eye development-related genes of fish as well as identifying novel genes. Further functional studies on these genes will provide more information on molecule regulation mechanism of eye development in olive flounder.

In Vitro Transcription Analyses of Autographa californica Nuclear Polyhedrosis Virus Genes

  • Huh, Nam-Eung
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권3호
    • /
    • pp.183-190
    • /
    • 1994
  • Cell-free extracts prepared from cultured insect cells, Spodoptera. frugiperda, were analyzed for activation of early gene transcription of an insect baculovirus, Autographa californica nuclear polyhedrosis virus (AcNPV). The template DNA used for in vitro transcription assays contained promoter sites for the baculovirus genes that have been classified as immediate early ($\alpha$) or early genes. These genes are located in the HindIII-K/Q region of the AcNPV genome. Nuclei isolated from the AcNPV-infected Spodoptera frugiperda cells were also used for in vitro transcription analysis by RNase-mapping the labeled RNA synthesized from in vitro run-on reaction in the isolated nuclei. The genes studied by this technique were p26 and pl0 genes which were classified as delayed early and late gene, respectively. We found that transcription of the genes from the HindIII-K region was accurately initiated and unique in the whole cell extract obtained from uninfected cells, although abundance of the in vitro transcripts was reverse to that of in vivo RNA. With isolated nuclei transcription of the p26 gene was inhibited by $\alpha$-amanitin suggesting that the p26 gene was transcribed by host RNA polymerase II. However, transcription of the pl0 gene in isolated nuclei was not inhibited by $\alpha$-amanitin, but rather stimulated by the inhibitor. We also found that the synthesis of $\alpha$-amanitin-resistant RNA polymerase was begun before 6 hr p.i., the time point at which the onset of viral DNA replication as well as the appearance of a-amanitin-resistant viral transcripts were detected. These studies give us strong evidence to support the previous data that early genes of AcNPV were transcribed by host RNA polymerease III, while transcription of late genes was mediated at least by a novel $\alpha$-amanitin-resistant RNA polymerase.

  • PDF

Regulation of Pluripotency-related Genes and Differentiation in Mouse Embryonic Stem Cells by Direct Delivery of Cell-penetrating Peptide-conjugated CARM1 Recombinant Protein

  • Choi, Sara;Jo, Junghyun;Seol, Dong-Won;Cha, Soo Kyung;Lee, Jeoung Eun;Lee, Dong Ryul
    • 한국발생생물학회지:발생과생식
    • /
    • 제17권1호
    • /
    • pp.9-16
    • /
    • 2013
  • Coactivator-associated arginine methyltransferase 1 (CARM1) is included in the protein arginine methyltransferase (PRMT) family, which methylates histone arginine residues through posttranslational modification. It has been proposed that CARM1 may up-regulate the expression of pluripotency-related genes through the alteration of the chromatin structure. Mouse embryonic stem cells (mESCs) are pluripotent and have the ability to self-renew. The cells are mainly used to study the genetic function of novel genes, because the cells facilitate the transmission of the manipulated genes into target mice. Since the up-regulated methylation levels of histone arginine residue lead to the maintenance of pluripotency in embryos and stem cells, it may be suggested that CARM1 overexpressing mESCs elevate the expression of pluripotency-related genes in reconstituted embryos for transgenic mice and may resist the differentiation into trophectoderm (TE). We constructed a fusion protein by connecting CARM1 and 7X-arginine (R7). As a cell-penetrating peptide (CPP), can translocate CARM1 protein into mESCs. CPP-CARM1 protein was detected in the nuclei of the mESCs after a treatment of 24 hours. Accordingly, the expression of pluripotency-related genes was up-regulated in CPP-CARM1-treated mESCs. In addition, CPP-CARM1-treated mESC-derived embryoid bodies (EBs) showed an elevated expression of pluripotency-related genes and delayed spontaneous differentiation. This result suggests that the treatment of recombinant CPP-CARM1 protein elevates the expression of pluripotency-related genes of mESCs by epigenetic modification, and this protein-delivery system could be used to modify embryonic fate in reconstituted embryos with mESCs.

Genes Expressed During Fruiting Body Formation of Agrocybe cylindracea

  • Shim, Sung-Mi;Kim, Sang-Beom;Kim, Hey-Young;Rho, Hyun-Su;Lee, Hyun-Sook;Lee, Min-Woong;Lee, U-Youn;Im, Kyung-Hoan;Lee, Tae-Soo
    • Mycobiology
    • /
    • 제34권4호
    • /
    • pp.209-213
    • /
    • 2006
  • Agrocybe cylindracea, an edible mushroom belonging to Bolbitiaceae, Agaricales, is widely used as invaluable medicinal material in the oriental countries. This study was initiated to find the genes expressed during the fruiting body formation of A. cylindracea. The cDNAs expressed differentially during fruiting body morphogenesis of A. cylindracea were isolated through subtractive hybridization between vegetative mycelia and fruiting bodies. The cDNAs expressed in the fruiting body morphogenesis of A. cylindracea were cloned and twenty genes were identified. Eleven were homologous to genes of known functions, three were homologous to genes in other organism without any function known. Six were completely novel genes specific to A. cylindracea so far examined. Some genes with known functions were a pleurotolysin, a self-assembling poreforming cytolysins; Aa-Pril and Pir2p, specifically induced genes during fruiting initiation of other mushroom, Agrocybe aegerita; an amino acid permease; a cytochrome P450; a MADS-box gene; a peptidylprolyl isomerase; and a serine proteinase. For other clones, no clear function was annotated so far. We believe the first report of the differentially expressed genes in fruiting process of A. cylindracea will be great helps for further research.