• 제목/요약/키워드: novel crystal protein

검색결과 36건 처리시간 0.026초

Identification of Novel Crystal Protein Gene from a Strain of Bacillus thuringiensis subsp. kenyae

  • Park, Jae-Young;Roh, Jong-Yul;Li, Ming-Shun;Shim, Hee-Jin;Boo, Kyung-Saeng;Je, Yeon-Ho
    • 한국잠사학회:학술대회논문집
    • /
    • 한국잠사학회 2003년도 제46회 춘계 학술연구 발표회
    • /
    • pp.73-73
    • /
    • 2003
  • Bacillus thuringiensis 2385-1, which showed toxicity to lepidopteran but not to dipteran was isolated from Korean soil sample and characterized. The H-serotype of 2385-1 was identical to that of serovar kenyae (H4a4c), and its crystal toxin was bipyramidal-shaped with a molecular weight of 130 kDa. However, the plasmid profile of 2385-1 was different from that of serovar kenyae. (omitted)

  • PDF

The Role of Lozenge in Drosophila Hematopoiesis

  • Koranteng, Ferdinand;Cha, Nuri;Shin, Mingyu;Shim, Jiwon
    • Molecules and Cells
    • /
    • 제43권2호
    • /
    • pp.114-120
    • /
    • 2020
  • Drosophila hematopoiesis is comparable to mammalian differentiation of myeloid lineages, and therefore, has been a useful model organism in illustrating the molecular and genetic basis for hematopoiesis. Multiple novel regulators and signals have been uncovered using the tools of Drosophila genetics. A Runt domain protein, lozenge, is one of the first players recognized and closely studied in the hematopoietic lineage specification. Here, we explore the role of lozenge in determination of prohemocytes into a special class of hemocyte, namely the crystal cell, and discuss molecules and signals controlling the lozenge function and its implication in immunity and stress response. Given the highly conserved nature of Runt domain in both invertebrates and vertebrates, studies in Drosophila will enlighten our perspectives on Runx-mediated development and pathologies.

Identification and Molecular Characterization of Insecticidal cryl-type Genes from Bacillus thuringiensis 2385-1

  • Li, Ming-Shun;Park, Jae-Young;Roh, Jong-Yul;Shim, Hee-Jin;Boo, Kyung-Saeng;Je, Yeon-Ho
    • 한국잠사학회:학술대회논문집
    • /
    • 한국잠사학회 2003년도 International Symposium of Silkworm/Insect Biotechnology and Annual Meeting of Korea Society of Sericultural Science
    • /
    • pp.114-115
    • /
    • 2003
  • A Bacillus thuringiensis isolate, Bt 2385-1, which showed toxicity to lepidopteran, was isolated from Korean soil sample and characterized. PCR-RFLP showed that this isolate contains two novel cryl-type crystal protein genes. In this study, we designed cryl-type specific primer set (ATG1-F and N400-R) to clone the toxic domain of the all cryl-type genes. The two novel rlyl-type toxin genes in addition to crylJal gene were cloned and sequenced. (omitted)

  • PDF

Molecular Characterization of Novel Insecticidal Cryl-Type Genes from Bacillus Thuringiensis K1

  • Li, Ming-Shun;Park, Jae-Young;Roh, Jong-Yul;Shim, Hee-Jin;Boo, Kyung-Saeng;Je, Yeon-Ho
    • 한국잠사학회:학술대회논문집
    • /
    • 한국잠사학회 2003년도 제46회 춘계 학술연구 발표회
    • /
    • pp.72-72
    • /
    • 2003
  • A new Bacillus thuringiensis strain (Kl), having high toxicities to Plutella xylostella and Spodoptera exigua was isolated from Korean soil sample. It was determined to belong to subsp. kurstaki (H3a3b3c) and produced bipyramidal inclusion. PCR-RFLP analysis showed that this isolate contains three novel cryl-type crystal protein genes in addition to crylAa and crylE genes. (omitted)

  • PDF

Application of hybrid LRR technique to protein crystallization

  • Jin, Mi-Sun;Lee, Jie-Oh
    • BMB Reports
    • /
    • 제41권5호
    • /
    • pp.353-357
    • /
    • 2008
  • LRR family proteins play important roles in a variety of physiological processes. To facilitate their production and crystallization, we have invented a novel method termed "Hybrid LRR Technique". Using this technique, the first crystal structures of three TLR family proteins could be determined. In this review, design principles and application of the technique to protein crystallization will be summarized. For crystallization of TLRs, hagfish VLR receptors were chosen as the fusion partners and the TLR and the VLR fragments were fused at the conserved LxxLxLxxN motif to minimize local structural incompatibility. TLR-VLR hybridization did not disturb structures and functions of the target TLR proteins. The Hybrid LRR Technique is a general technique that can be applied to structural studies of other LRR proteins. It may also have broader application in biochemical and medical application of LRR proteins by modifying them without compromising their structural integrity.

Quantitative Structure-Activity Relationships and Molecular Docking Studies of P56 LCK Inhibitors

  • Bharatham, Nagakumar;Bharatham, Kavitha;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권2호
    • /
    • pp.266-272
    • /
    • 2006
  • Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were developed for 67 molecules of 2-amino-benzothiazole-6-anilide derivatives against lymphocyte-specific protein tyrosine kinase (P56 LCK). The molecular field analysis (MFA) and receptor surface analysis (RSA) were employed for QSAR studies and the predictive ability of the model was validated by 15 test set molecules. Structure-based investigations using molecular docking simulation were performed with the crystal structure of P56 LCK. Good correlation between predicted fitness scores versus observed activities was demonstrated. The results suggested that the nature of substitutions at the 2-amino and 6-anilide positions were crucial in enhancing the activity, thereby providing new guidelines for the design of novel P56 LCK inhibitors.

Characterization of a Novel cry1-Type Gene from Bacillus thuringiensis subsp. alesti Strain LY-99

  • Qi, Xu Feng;Li, Ming Shun;Choi, Jae-Young;Roh, Jong-Yul;Song, Ji Zhen;Wang, Yong;Jin, Byung-Rae;Je, Yeon-Ho;Li, Jian Hong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제18권1호
    • /
    • pp.18-27
    • /
    • 2009
  • B. thuringiensis strain LY-99 belonging to subsp. alesti (H3a3c), was isolated from Chinese tobacco warehouse and showed significantly high toxicity to Plutella xylostella. For the identification of the cry1-type genes from B. thuringiensis LY-99, an extended multiplex PCRrestriction fragment length polymorphism (PCRRFLP) method was established by using two pairs of universal primers based on the conserved regions of the cry1-type genes to amplify around 2.4 kb cry1-type gene fragments. Then the DNA fragment was cloned into pGEM-T Easy vector and digested with EcoRI and EcoRV enzymes. Through this method, a known cry1-type gene was successfully identified from the reference strain, B. thuringiensis subsp. alesti. In addition, the RFLP patterns revealed that B. thuringiensis LY-99 included a novel cry1A-type gene in addition to cry1Aa, cry1Ac, cry1Be and cry1Ea genes. The novel cry1A-type gene was designated cry1Ah2 (Genbank accession No DQ269474). An inverse PCR method was used to amplify the flank regions of cry1Ah2 gene. Finally, 3143 bp HindIII fragment from B. thuringiensis LY-99 plasmid DNA including 5' region and partial ORF was amplified, and sequence analysis revealed that cry1Ah2 gene from LY-99 showed 89.31% of maximum sequence similarity with cry1Ac1 crystal protein gene. In addition, the deduced amino acid sequence of Cry1Ah2 protein shared 87.80% of maximum identity with that of Cry1Ac2. This protein therefore belongs to a new class of B. thuringiensis crystal proteins.

Protein tRNA Mimicry in Translation Termination

  • Nakamura, Yoshikazu
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2001년도 Proceedings of 2001 International Symposium
    • /
    • pp.83-89
    • /
    • 2001
  • Recent advances in the structural and molecular biology uncovered that a set of translation factors resembles a tRNA shape and, in one case, even mimics a tRNA function for deciphering the genetic :ode. Nature must have evolved this 'art' of molecular mimicry between protein and ribonucleic acid using different protein architectures to fulfill the requirement of a ribosome 'machine'. Termination of protein synthesis takes place on the ribosomes as a response to a stop, rather than a sense, codon in the 'decoding' site (A site). Translation termination requires two classes of polypeptide release factors (RFs): a class-I factor, codon-specific RFs (RFI and RF2 in prokaryotes; eRFI in eukaryotes), and a class-IT factor, non-specific RFs (RF3 in prokaryotes; eRF3 in eukaryotes) that bind guanine nucleotides and stimulate class-I RF activity. The underlying mechanism for translation termination represents a long-standing coding problem of considerable interest since it entails protein-RNA recognition instead of the well-understood codon-anticodon pairing during the mRNA-tRNA interaction. Molecular mimicry between protein and nucleic acid is a novel concept in biology, proposed in 1995 from three crystallographic discoveries, one, on protein-RNA mimicry, and the other two, on protein-DNA mimicry. Nyborg, Clark and colleagues have first described this concept when they solved the crystal structure of elongation factor EF- Tu:GTP:aminoacyl-tRNA ternary complex and found its overall structural similarity with another elongation factor EF-G including the resemblance of part of EF-G to the anticodon stem of tRNA (Nissen et al. 1995). Protein mimicry of DNA has been shown in the crystal structure of the uracil-DNA glycosylase-uracil glycosylase inhibitor protein complex (Mol et al. 1995; Savva and Pear 1995) as well as in the NMR structure of transcription factor TBP-TA $F_{II}$ 230 complex (Liu et al. 1998). Consistent with this discovery, functional mimicry of a major autoantigenic epitope of the human insulin receptor by RNA has been suggested (Doudna et al. 1995) but its nature of mimic is. still largely unknown. The milestone of functional mimicry between protein and nucleic acid has been achieved by the discovery of 'peptide anticodon' that deciphers stop codons in mRNA (Ito et al. 2000). It is surprising that it took 4 decades since the discovery of the genetic code to figure out the basic mechanisms behind the deciphering of its 64 codons.

  • PDF