• Title/Summary/Keyword: nose curve

Search Result 32, Processing Time 0.023 seconds

A Study on the 5-Axis Machining for Ball Gear Cam (볼기어캠의 5-축 가공에 관한 연구)

  • Cho, Hyun-Deog;Woo, Hyun-Gu;Shin, Yong-Bum
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.98-104
    • /
    • 2020
  • In this work, a study on the 5-axis machining of ball gear cam is conducted which is a continuation of reference [1]. The ball gear cam used in this study delivers motion in conjunction with the ball supported by the turret. Therefore, it requires carbonizing heat treatment and is usually completed using a 4-axis machining with a carbide ball end mill. If the nose part of the ball end mill is not allowed to participate in the machining, then CBN tools without the nose part can be used. However, machining of certain shapes can be carried out only by contacting the ball in some of the areas on either side which can improve the surface of the machining. This requires a 5-axis machining in order to maintain a constant angle for the processing path. Therefore, in this work, the 5-axis machining method is studied in order to maintain the direction of the cutter axis at a constant angle with the tangent direction of the curve-ball gear cam. Furthermore, the 5-axis machining program for the ball gear cam was developed and the machining experiment was completed and verified.

A Development of Design Method for Deceleration Transition Curve Based on Vehicle Driving Characteristics (차량 주행특성을 고려한 감속 완화곡선 설계방법 개발)

  • Lee, Jeom-Ho
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.97-107
    • /
    • 2008
  • I study for design criteria and research about Interchange diverging area of express highway and freeway, the most recent, at interchange diversion of express highway and freeway, design criteria and researches are focus on safety guarantee a point of view movement dynamics of vehicle and road geometric as to transition section, deceleration section, curve radius, nose section, outflow angle etc, that is, design criteria and research of Interchange diverging area have not consider a point of view movement dynamics of vehicle and road geometric and driver, so that I will be focus characteristic of runing speed on trasion curve. and I will consider vehicle running speed characteristics and study problem of Interchange diverging area design criteria. For this study, First, analysis meaning about theory of now design criteria, Second, look at vehicle running speed and traffic accident characteristics of Interchange diverging area, Third, propose new deceleration transition curve design method get along vehicle running speed characteristics of Interchange diverging area. new deceleration transition curve design method put out new outcoums, that is, I definite cause to safety new deceleration transition curve design method better than pressently, used design criteria of Interchange diverging area, especially, deceleration transition curve design criteria produced good result in the running speed 50km/h, 40km/h, that is inertia better than inertia of present used design criteria. and deceleration transition curve is extended better than present transition curve criteria, so that new deceleration transition curve design method safety is good better than the past method safety.

  • PDF

Comparison of Commercial Multi-use Mask Patterns for Korean Adult Women

  • Cha, Su-Joung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.185-193
    • /
    • 2022
  • This study attempted to compare and analyze the commercially available multi-use patterns to develop mask patterns suitable for the face types of adult women. Through this, it was intended to provide necessary data to mask pattern development and products. As a results of comparing the dimensions and shapes of commercial multi-use mask patterns, there was a significant difference in dimensions even though it was a L-size mask manufactured for adults. As a result of the appearance evaluation of the virtual outfit, there were significant differences by design in the vertical of the center front line, the cover and space of the mask, the height of the nose, and the lower part of the mask. The side also showed significant differences in the covering of the side of the face, the space of the side, and the width and length of the string. As a result of the appearance evaluation, Mask 4 received the best evaluation. The shape of the mask pattern had a large dart in the lower part of the nose so that it can cover the three-dimensional shape of the face, but there was a difference in the degree and angle of the curve depending on the mask. Although the upper part of the mask, the lower part of the mask, and the cheek part are in close contact, the evaluation of the mask pattern, which has room in the nose and mouth, was high. It is thought that the mask pattern should be set according to the upper length, lower length, and nose height of the mask through analysis of the face shape and dimensions.

Effect of Punch Design and Flow Stress on Frictional Calibration Curve in Boss and Rib Test (보스-리브 시험 시 마찰보정선도에 대한 펀치형상 및 유동응력의 영향)

  • Yun, Y.W.;Kang, S.H.;Lee, Y.S.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.8
    • /
    • pp.640-645
    • /
    • 2009
  • Recently, boss and rib test based on backward extrusion process was proposed to quantitatively evaluate the interfacial friction condition in bulk forming process. In this test, the tube-shaped punch with hole pressurizes the workpiece so that the boss and rib are formed along the hole and outer surface of the punch. It was experimentally and numerically revealed that the height of boss is higher than that of the rib under the severe friction condition. This work is focused on the effect of the punch design and flow stress on deformation pattern in boss and rib test. From the boss and rib test simulations, it was found that there is slight variation in both the heights of boss and rib according to the length of punch land, nose radius, and face angle. However the hole diameter of the punch and the clearance between the punch and die have a significant influence on the calibration curves showing the heights of the boss and rib. In addition, the effect of flow stress on the calibration curves was investigated through FE simulations. It was found that there is no effect of strength coefficient of the workpiece on the calibration curves for estimation of friction condition. On the other hand, the strain-hardening exponent of the workpiece has a significant influence on the calibration curve.

Development of Equilibium Flow Calculation Program Using a Modified Newtonian Method (수정 뉴토니안 방법을 이용한 평형유동 해석 프로그램 개발)

  • Choi, Jaehyeok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.483-491
    • /
    • 2016
  • A simple aerodynamic calculation program for high Mach number flow is developed by combining the modified Newtonian method with Tannehill's curve fits for the thermodynamic properties of air in equilibrium state. Aerodynamic characteristics for a parabolic nose are predicted and compared with CFD(Computational Fluid Dynamics) analysis results. Comparison shows good agreements, and the developed program is expected to be a practical tool for slender body aerodynamic calculation for high Mach number flow.

Contingency Selection Using Eigen-Sensitivity Analysis for Voltage Stability. (고유치감도 해석에 의한 전압안정도의 상정사고 선택)

  • Song, S.G.;Nam, H.K.;Shim, K.S.;Moon, Y.H.;Choi, H.K.;NamKung, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.66-68
    • /
    • 2000
  • The Eigen analysis in large power system provides much useful information that is not got in nose curve. The branch participation factor is not quantitative information and is an indirect method calculating incremental change in branch reactive loss. But the Eigen sensitivity analysis to each mode is direct and provides of quantitative information but this method because of needing much time is used in large power system. In this paper the Hessenberg method is used to obtaining dominant eignvalues and corresponding eigenvectors of Jacobian matrix. Ranking the critical contingencies is done by computing the Eigen sensitivity of each dominant eignvalues for changes of each line. The proposed algorithm is tested on the New England 30-bus system and KEPCO system in the year of 2000, which comprises of 791-bus and 2500-branches.

  • PDF

An Intelligent System to Prevent Voltage Collapse for A Power system (전력계통의 전압 붕괴 방지를 위한 인텔리젼트 시스템)

  • Kim, Jae-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.10
    • /
    • pp.472-479
    • /
    • 2001
  • In order to prevent voltage collapse. this paper introduces the idea of the intelligent system and operating polices for a power system, then presents the results of voltage stability studies for that power system. The intelligent system includes a dedicated computer doing calculation and evaluation jobs and several intelligent relays serving as last guards to carry out the pre-set remedies. In the intelligent system, P-V curves are used to determine the operating margin from the current operating point to the maximum operating point, or the nose point. This paper suggests an operating guide for voltage stability of a power system. The effectiveness of location ad amount of load shedding for the different power load models are studied.

  • PDF

The importance of nose, eye, and In-dang(印堂) region in inspecting color diagnosis (망진(望診) 찰색(察色)에 있어서 비(鼻), 안(眼), 인당(印堂)의 중요성)

  • Chang, Jun-Young;Kang, Jung-Soo;Kim, Byoung-Soo
    • Journal of Haehwa Medicine
    • /
    • v.19 no.1
    • /
    • pp.87-98
    • /
    • 2010
  • There are four kinds of diagnosis methods in oriental medicine, and viewing diagnosis(望診) is the most important method among them. There are two ways in viewing diagnosis. These are viewing shape(觀形) and inspecting color(察色). Viewing shape diagnosis includes observation on geometric curve that is made by prominence of bones or lump of flesh, and examination on symmetric disparity and balance of vertical length among three vertical section of face. Inspecting color is literally inspecting several specified region of face. By Viewing shape, we can learn about characteristic physical mechanism of individuals, and basic disposition of reaction from inside and outside infinite stimulations. On the other hand, by inspecting color, we can estimate the very present pathologic and physiologic status of the patient. the estimation is based on principle that inside body changes reveal some reflections on facial skin surface. When you diagnosis patients with inspecting color method, It is important to distinguish color delicately, and to know where to see and what to know from it. The most important and frequently mentioned regions are myong-dang(明堂), eyes(眼) and In-dang(印堂). Myong-dang(明堂) indicates nose. In-dang(印堂) indicates the space between eyebrows. Unlike myong-dang(印堂) and eyes, In-dang(印堂) is occasionally treated as a trivial region then others. But, from research on classical books of facial examination and consideration of it's locational meanings, we've learned In-dang(印堂) is very important in viewing diagnosis, because this region is crossing of the other two regions and this fact means this region expresses the spiritual status as well as physical status in one region.

Aesthetic Characteristics of Face in the Late Joseon-dynasty's Beauty Paintings (조선후기 미인화에 표현된 얼굴의 미적 특성)

  • Lee, Hyun-Ok;Ku, Yang-Suk
    • Fashion & Textile Research Journal
    • /
    • v.14 no.6
    • /
    • pp.918-927
    • /
    • 2012
  • This study identified the aesthetic characteristics of the face description in late Joseon Dynasty beauty paintings. A total of 24 beauty paintings were selected as representative of the late Joseon Dynasty genre of painting works. The paintings were analyzed by the shape, color, and physiognomy of beauty trends from the components of women's faces expressed in the works of artists. The results of this study showed that the shape of the face components expressed a round, curved and thin line. Colors were expressed through Obang-sack (a traditional Korean color). Also the physiognomy of the late Joseon Dynasty's women was soft, wise, economical and brilliant. A round-forehead meant that economical and virtuous housekeeper, thin crescent shaped eyebrows denoted women of wisdom and excellent sensitivity. Single long thin eyelids and implied a women of longevity. A round curved nose were eager tobe a wise mother and a good wife. Small concave lips were desired eagerly by gentle and intelligent women. A curve face implied a subjective women of insight and good memory. In conclusion, the late Joseon Dynasty beauty paintings expressed a traditional Korean beauty face and a modern baby face. The data are useful for the aesthetic standards of modern through meaning of Korean traditional beauty.

Quick and Accurate Computation of Voltage Stability Margin

  • Karbalaei, Farid;Abasi, Shahriar
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • It is well known that the behavior of PV curves is similar to a quadratic function. This is used in some papers to approximate PV curves and calculate the maximum-loading point by minimum number of power flow runs. This paper also based on quadratic approximation of the PV curves is aimed at completing previous works so that the computational efforts are reduced and the accuracy is maintained. To do this, an iterative method based on a quadratic function with two constant coefficients, instead of the three ones, is used. This simplifies the calculation of the quadratic function. In each iteration, to prevent the calculations from diverging, the equations are solved on the assumption that voltage magnitude at a selected load bus is known and the loading factor is unknown instead. The voltage magnitude except in the first iteration is selected equal to the one at the nose point of the latest approximated PV curve. A method is presented to put the mentioned voltage in the first iteration as close as possible to the collapse point voltage. This reduces the number of iterations needed to determine the maximum-loading point. This method is tested on four IEEE test systems.