• Title/Summary/Keyword: normalized difference vegetation index

Search Result 410, Processing Time 0.022 seconds

Analysis of Drought Detection and Propagation Using Satellite Data (인공위성 영상 정보를 이용한 가뭄상황 및 징후분석)

  • Shin, Sha-Chul;Eoh, Min-Sun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.2 s.13
    • /
    • pp.61-69
    • /
    • 2004
  • Drought is one of the mai or environmental disasters. Weather data, particularity rainfall, are currently the primary source of information widely used for drought monitoring. However, weather data are often from a very sparse meteorological network. Therefore, data obtained from the Advanced Very High Resolution Radiometer(AVHRR) sensor boarded on the NOAA polar-orbiting satellites have been studied as a tool for drought monitoring. The normalized difference vegetation index(NDVI) and vegetation condition index(VCI) were used in this study. Also, a simple method to detect drought Is Proposed based on climatic water balance using NOAA/AVHRR data. The results clearly show that temporal and spatial characteristics of drought in Korea can be detected and mapped by the moisture index.

Evaluating Cross-correlation of GOSAT CO2 Concentration with MODIS NDVI Patterns in North-East Asia (동북아시아에서 GOSAT CO2와 MODIS 식생지수 분포의 상관성 분석)

  • Choi, Jin Ho;Joo, Seung Min;Um, Jung Sup
    • Spatial Information Research
    • /
    • v.21 no.5
    • /
    • pp.15-22
    • /
    • 2013
  • The purpose of this work is to investigate correlation between $CO_2$ concentration and NDVI (Normalized Difference Vegetation Index) in North East Asia. Geographically weighted regression techniques were used to evaluate the spatial relationships between GOSAT (Greenhouse Observing SATellite) $CO_2$ measurement and MODIS (Moderate Resolution Imaging Spectroradiometer) vegetation index. The results reveals that $CO_2$ concentration to be negatively associated with NDVI. The analysis of Global Morans' I index and Anselin Local Morasn's I showed spatial autocorrelation between the overall spatial pattern of $CO_2$ and NDVI. Ultimately, there were clustered patterns in both data sets. The results show that carbon dioxide concentration shows non-random distribution patterns in relation to NDVI clusters, which proves that intense development activities such as deforestation are influencing carbon dioxide emission across the area of analysis. However, as the concentration of carbon dioxide varies depending on a variety of factors such as artificial sources, plant respiration, and the absorption and discharge of the ocean, follow-up studies are required to evaluate the correlations among more related variables.

Satellite-Based Cabbage and Radish Yield Prediction Using Deep Learning in Kangwon-do (딥러닝을 활용한 위성영상 기반의 강원도 지역의 배추와 무 수확량 예측)

  • Hyebin Park;Yejin Lee;Seonyoung Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.1031-1042
    • /
    • 2023
  • In this study, a deep learning model was developed to predict the yield of cabbage and radish, one of the five major supply and demand management vegetables, using satellite images of Landsat 8. To predict the yield of cabbage and radish in Gangwon-do from 2015 to 2020, satellite images from June to September, the growing period of cabbage and radish, were used. Normalized difference vegetation index, enhanced vegetation index, lead area index, and land surface temperature were employed in this study as input data for the yield model. Crop yields can be effectively predicted using satellite images because satellites collect continuous spatiotemporal data on the global environment. Based on the model developed previous study, a model designed for input data was proposed in this study. Using time series satellite images, convolutional neural network, a deep learning model, was used to predict crop yield. Landsat 8 provides images every 16 days, but it is difficult to acquire images especially in summer due to the influence of weather such as clouds. As a result, yield prediction was conducted by splitting June to July into one part and August to September into two. Yield prediction was performed using a machine learning approach and reference models , and modeling performance was compared. The model's performance and early predictability were assessed using year-by-year cross-validation and early prediction. The findings of this study could be applied as basic studies to predict the yield of field crops in Korea.

Detection of Wildfire Burned Areas in California Using Deep Learning and Landsat 8 Images (딥러닝과 Landsat 8 영상을 이용한 캘리포니아 산불 피해지 탐지)

  • Youngmin Seo;Youjeong Youn;Seoyeon Kim;Jonggu Kang;Yemin Jeong;Soyeon Choi;Yungyo Im;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1413-1425
    • /
    • 2023
  • The increasing frequency of wildfires due to climate change is causing extreme loss of life and property. They cause loss of vegetation and affect ecosystem changes depending on their intensity and occurrence. Ecosystem changes, in turn, affect wildfire occurrence, causing secondary damage. Thus, accurate estimation of the areas affected by wildfires is fundamental. Satellite remote sensing is used for forest fire detection because it can rapidly acquire topographic and meteorological information about the affected area after forest fires. In addition, deep learning algorithms such as convolutional neural networks (CNN) and transformer models show high performance for more accurate monitoring of fire-burnt regions. To date, the application of deep learning models has been limited, and there is a scarcity of reports providing quantitative performance evaluations for practical field utilization. Hence, this study emphasizes a comparative analysis, exploring performance enhancements achieved through both model selection and data design. This study examined deep learning models for detecting wildfire-damaged areas using Landsat 8 satellite images in California. Also, we conducted a comprehensive comparison and analysis of the detection performance of multiple models, such as U-Net and High-Resolution Network-Object Contextual Representation (HRNet-OCR). Wildfire-related spectral indices such as normalized difference vegetation index (NDVI) and normalized burn ratio (NBR) were used as input channels for the deep learning models to reflect the degree of vegetation cover and surface moisture content. As a result, the mean intersection over union (mIoU) was 0.831 for U-Net and 0.848 for HRNet-OCR, showing high segmentation performance. The inclusion of spectral indices alongside the base wavelength bands resulted in increased metric values for all combinations, affirming that the augmentation of input data with spectral indices contributes to the refinement of pixels. This study can be applied to other satellite images to build a recovery strategy for fire-burnt areas.

Analysis of Changes in NDVI Annual Cycle Models Caused by Forest Fire in Yangyang-gun, Gangwon-do Using Time Series of Landsat Images

  • Choi, Yoon Jo;Cho, Han Jin;Hong, Seung Hwan;Lee, Su Jin;Sohn, Hong Gyoo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.4
    • /
    • pp.3-11
    • /
    • 2016
  • Sixty four percent of Korean territory consists of forest which is fragile for forest fire. However, it is difficult to detect the disaster-induced damages due to topographic complexity in mountainous areas and harsh weather conditions. For this reason, satellite imaging systems have been widely utilized to detect the damage caused by forest fire. In particular, ground vegetation condition can be estimated from multi-spectral satellite images and change detection technique has been used to detect forest fire damages. However, since Korea has clear four seasons, simple change detection technique has limitation. In this regard, this study applied the NDVI(normalized difference vegetation index) annual cycle modeling technique on time-series of Landsat images from 1991 to 2007 to analyze influence of forest fire of Yangyang-gun, Gangwon-do in 2005 on vegetation condition. The encouraging result was obtained when comparing the areas where forest fire occurs with non-damaged areas. The mean value of NDVI was decreased by 0.07 before and after the forest fire. On the other hand, annual variability of NDVI had been increasing and peak value of NDVI was stationary after the forest fire. It is interpreted that understory vegetation was seriously damaged from the forest fire occurred in 2005.

The Availability Examination for Vegetation Measurement of The SLR Digital Camera (SLR 디지털카메라의 식생관측센서로서의 유효성 검토)

  • Kim, Jong-Hwan;Kim, Eung-Nam;Jun, Byung-Dug;K., Sugiyama
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.1
    • /
    • pp.683-692
    • /
    • 2009
  • On-site remote sensing technique by using single lens reflex(SLR) digital camera will be expected as the useful tool for the vegetation measurement field such as a crop growth management, the monitoring of revegetation slope and the evaluation of environment. We reviewed the availability of the vegetation measurement using a digital camera which is sailed for general-purpose. As a result, we could analysis relationship with the illuminance of image plane and incidence energy of multitemporal observation images by doing gamma correction and exposure compensation. And also, we proposed the model formulas for the correction of influences of capturing angle and illuminance. In addition, we obtained high correlation of normalized difference vegetation index(NDVI) between digital camera and spectral photometer.

Analysis on Urban Heat Island Effects for the Metropolitan Green Space Planning (광역적 녹지계획 수립을 위한 도시열섬효과 분석)

  • Park, Kyung-Hun;Jung, Sung-Kwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.3
    • /
    • pp.35-45
    • /
    • 1999
  • The research is to examine urban heat island effects which is resulted from urbanization using thermal infrared band of Landsat TM data and to demonstrate heat island alleviation effects of green spaces through correlation analysis of NDVI(Normalized Difference Vegetation Index) and surface temperature. According to the results, forests which are covered with natural vegetation have a high NDVI digital values, but surface temperature is very low, and urban areas which is composed of artificial paving materials have a low NDVI, surface temperature increases gradually. In summary, the analysis of relationship between NDVI and surface temperature, used in this study, is regarded as one of effective methodologies for proving heat island alleviation effects of vegetation.

  • PDF

Suggestion of Simple Method to Estimate Evapotranspiration Using Vegetation and Temperature Information (식생 및 기온정보를 조합한 증발산량 산정을 위한 간편법 제안)

  • Shin, Sha-Chul;Hwang, Man-Ha;Ko, Ick-Hwan;Lee, Sang-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.4 s.165
    • /
    • pp.363-372
    • /
    • 2006
  • Many methods have been used to estimate evapotranspiration. However, there is little information about the evapotranspiration from river basins with complicated topographies and variable land use. Remote sensing technique is a probable means to estimate distribution of the evapotranspiration in connection with regional characteristics of vegetation and landuse. The evapotranspiration not only depends on meteorological circumstances but also on the condition of the vegetation. The latter effect can be expressed in terms of NDVI(Normalized Difference Vegetation Index) obtained by NOAA/AVHRR datasets. In this paper, a simple method to estimate evapotranspiration of the Keum river basin is proposed based on NDVI and temperature data.

Adaptive Reconstruction of NDVI Image Time Series for Monitoring Vegetation Changes (지표면 식생 변화 감시를 위한 NDVI 영상자료 시계열 시리즈의 적응 재구축)

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • Irregular temporal sampling is a common feature of geophysical and biological time series in remote sensing. This study proposes an on-line system for reconstructing observation image series including bad or missing observation that result from mechanical problems or sensing environmental condition. The surface parameters associated with the land are usually dependent on the climate, and many physical processes that are displayed in the image sensed from the land then exhibit temporal variation with seasonal periodicity. An adaptive feedback system proposed in this study reconstructs a sequence of images remotely sensed from the land surface having the physical processes with seasonal periodicity. The harmonic model is used to track seasonal variation through time, and a Gibbs random field (GRF) is used to represent the spatial dependency of digital image processes. In this study, the Normalized Difference Vegetation Index (NDVI) image was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula, and the adaptive reconstruction of harmonic model was then applied to the NDVI time series from 1996 to 2000 for tracking changes on the ground vegetation. The results show that the adaptive approach is potentially very effective for continuously monitoring changes on near-real time.

Parallel Processing of Satellite Images using CUDA Library: Focused on NDVI Calculation (CUDA 라이브러리를 이용한 위성영상 병렬처리 : NDVI 연산을 중심으로)

  • LEE, Kang-Hun;JO, Myung-Hee;LEE, Won-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.29-42
    • /
    • 2016
  • Remote sensing allows acquisition of information across a large area without contacting objects, and has thus been rapidly developed by application to different areas. Thus, with the development of remote sensing, satellites are able to rapidly advance in terms of their image resolution. As a result, satellites that use remote sensing have been applied to conduct research across many areas of the world. However, while research on remote sensing is being implemented across various areas, research on data processing is presently insufficient; that is, as satellite resources are further developed, data processing continues to lag behind. Accordingly, this paper discusses plans to maximize the performance of satellite image processing by utilizing the CUDA(Compute Unified Device Architecture) Library of NVIDIA, a parallel processing technique. The discussion in this paper proceeds as follows. First, standard KOMPSAT(Korea Multi-Purpose Satellite) images of various sizes are subdivided into five types. NDVI(Normalized Difference Vegetation Index) is implemented to the subdivided images. Next, ArcMap and the two techniques, each based on CPU or GPU, are used to implement NDVI. The histograms of each image are then compared after each implementation to analyze the different processing speeds when using CPU and GPU. The results indicate that both the CPU version and GPU version images are equal with the ArcMap images, and after the histogram comparison, the NDVI code was correctly implemented. In terms of the processing speed, GPU showed 5 times faster results than CPU. Accordingly, this research shows that a parallel processing technique using CUDA Library can enhance the data processing speed of satellites images, and that this data processing benefits from multiple advanced remote sensing techniques as compared to a simple pixel computation like NDVI.