• Title/Summary/Keyword: normalized EMG

Search Result 103, Processing Time 0.021 seconds

The Study of Isometric Endurance Time by Task Type and Maximum Voluntary Contraction (작업형태 및 최대 수의적 수축에 따른 등척성 근지구력에 관한 연구)

  • Sim, Jeong-Hun;Lee, Sang-Do
    • Journal of the Ergonomics Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.57-69
    • /
    • 2003
  • This study was performed to investigate the isometric endurance time as percentages of maximum voluntary contraction. Electromyogram(EMG) and Borg's CR-I0 value were measured by push-pull-up-down tasks for 10 healthy males. The normalized EMG value and the MPF(mean power frequency) were used to estimate the muscle recruitment pattern and the development of muscle fatigue. The subjects exerted and maintained 5 levels of %MVC(maximum voluntary contraction) in $90^{\circ}$ shoulder flexion/ 180oelbow extension at sitting posture. The up-task showed the lower endurance time and higher Borg's CR-I0 value than the other task types. Comparing Rohmert's curve with the endurance time of task types. Rohmert's curve overestimated the endurance time of up-task and underestimated the endurance time of push-pull-down tasks. The normalized EMG value showed that muscles recruitment patterns were different from task types. The 4 muscles(biceps brachii muscle, tricep brachii muscle. middle deltoid muscle. trapezius muscle) recruitment patterns of up-task were higher than those of other tasks. The MPF value decreased with the endurance time, and the shift of MPF at up-task was larger than that of the other task types.

The Effects of Foot Position on Electromyographic Activity of Knee Extensors in Standing (기립자세에서 발위치가 무릎 폄근의 등척성수축 근전도 활성도에 미치는 영향)

  • Kim, Seng-Jung;Kwon, Oh-Yun;Cho, Sang-Hyun;Hwang, Ji-Hye
    • Physical Therapy Korea
    • /
    • v.8 no.2
    • /
    • pp.1-16
    • /
    • 2001
  • This study was designed to identify the effects of foot position on electromyographic (EMG) activity of the quadriceps femoris during maximum voluntary contraction (MVC) in standing. Twenty young adults who had not experienced any knee injuries were recruited. Their Q-angles were within a normal range. They were asked to stand in five different foot positions ($40^{\circ}$ externally rotated, $30^{\circ}$ internally rotated, neutral, $20^{\circ}$ plantarflexed, and $10^{\circ}$ dorsiflexed foot position). The EMG activities of the vastus lateralis (VL), rectus femoris (RF), and vastus medialis oblique (VMO) were recorded in standing by surface electrodes and normalized by MVC EMG values derived from manual muscle test. The normalized EMG activity levels (%MVC EMG) of muscles in the five foot positions were compared using repeated measures ANOVA. The EMG activity levels of the VL, RF, and VMO were the highest when foot was externally rotated. The EMG activity levels of the VL and RF were significantly different among the foot positions (p<.05). However, EMG activity levels of the VL, RF, VMO, and VMO/VL ratio did not show significant differences in each foot position (p> .05). The results suggest that the quadriceps femoris may be effectively activated by performing MVC at an externally rotated foot position. Therefore, the externally rotated foot position can be considered as an effective foot position for quadriceps femoris strengthening exercise. Further studies are needed to identify whether there are differences in the effects of foot position on muscle strength after MVC exercise of quadriceps femoris in standing.

  • PDF

Influence of Forward Head Posture on Electromyography Activity of Hyoid Muscles During Mouth Opening

  • Song, Jae-Ik;Kang, Sun-Young;Park, Joo-Hee;Cynn, Heon-Seock;Jeon, Hye-Seon
    • Physical Therapy Korea
    • /
    • v.22 no.1
    • /
    • pp.103-109
    • /
    • 2015
  • Although the relationship between temporomandibular disorder and forward head posture (FHP) is controversial, it is generally accepted that altered head posture can affect mandible position and masticatory muscles activity. Because suprahyoid (SH) and infrahyoid (IH) muscles are stretched by increased passive tension in FHP, this study investigated their activity during mouth opening in FHP compared to neutral head posture (NHP). Twenty healthy subjects (10 males and 10 females) participated in this study. Head postures were evaluated with a cervical range of motion instrument. Electromyography (EMG) activity of bilateral SH and IH muscles was measured while an open mouth was maintained at each head posture. Paired t-test was used to identify significant differences in normalized EMG activity between head postures. Statistical significance was set at .01. Results showed the normalized EMG activity of SH and IH muscles were significantly lower in FHP compared to NHP. This finding indicates that FHP affects the EMG activity of hyoid muscles when they are stretched.

Effects of a Combined Posture of the Lower Extremity on Activity of the Vastus Medialis Oblique Muscle and Vastus Lateralis Muscle During Static Squat Exercise (정적인 스쿼트 운동시 복합적인 하지의 자세가 가쪽넓은근과 안쪽빗넓은근의 근활성도에 미치는 영향)

  • Yoo, Won-Gyu;Yi, Chung-Hwi;Lee, Hyun-Ju
    • Physical Therapy Korea
    • /
    • v.11 no.3
    • /
    • pp.1-9
    • /
    • 2004
  • Most exercise for Patellofemoral pain syndrome (PFPS) has focused on selectively strengthening the vastus medialis oblique muscle (VMO). Although open chain knee extension exercises are effective for increasing overall quadriceps strength, they are not always indicated for PFPS rehabilitation. This study was designed to identify the effect of combined posture of lower extremity on Electromyographic (EMG) activity of the vastus lateralis muscle (VL) and VMO during static squat exercises. The subjects were twenty young adult males who had not experienced any knee injury and their Q-angle was within a normal range. They were asked to perform static squat exercises in five various postures using their lower extremities. The EMG activity of the VL and VMO were recorded in five exercises by surface electrodes and normalized by %MVC values derived from seated, isometric knee extensions. The normalized EMG activity levels (%MVC) of the VL and VMO for the five postures of the lower extremities were compared using one way ANOVA with repeated measures. Results of repeated measures of ANOVA's revealed that exercise 3 and exercise 5 produced significantly greater EMG activity of VMO/VL ratios than exercise 1 (p<.05). When the static squat exercise was combined with hip adduction and toes pointed outwardly, the EMG activity of VMO/VL rates was increased. The EMG activity of VMO/VL ratio was highest during static squat exercises performed on a decline squat. These results haveimportant implications for progressive and selective VMO muscle strengthening exercises in PFPS patients.

  • PDF

Effects of the Hip Internal Rotation Gait on Gluteal and Erector Spinae Muscle Activity (고관절 내회전 보행이 둔부 근육과 척추 기립근의 근활성도에 미치는 영향)

  • Kwon, Oh-Yun;Won, Jong-Hyuck;Oh, Jae-Seop;Lee, Won-Hwee;Kim, Soo-Jung
    • Physical Therapy Korea
    • /
    • v.13 no.1
    • /
    • pp.24-31
    • /
    • 2006
  • The purpose of this study was to identify the effect of the hip internal rotation on gluteal and erector spinae muscle electromyographic (EMG) activity during treadmill walking. Eleven healthy subjects were recruited. All subjects performed treadmill walking while maintaining the hip in neutral position (condition 1) and in internal rotation (condition 2). Surface EMG activity was recorded from four muscles (gluteus maximus (GM), gluteus medius (GMED), tensor fascia latae (TFL), and erector spinae (ES)) and the hip internal rotation angle was measured using a three dimensional motion analysis system. The gait cycle was determined with two foot switches, and stance phase was normalized as 100% stance phase (SP) for each condition using the MatLab 7.0 program. The normalized EMG activities according to the hip rotation (neutral or internal rotation) were compared using a paired t-test. During the entire SP of treadmill walking, the EMG activities of GM in condition 1 were significantly greater than in condition 2 (p<.05). The EMG activities of TFL and ES in condition 2 were significantly greater than in condition 1 (p<.05). The EMG activities of the GMED in condition 1 were significantly greater than in condition 1 (p>.05) except for 80~100% SP. Further studies need randomized control trials regarding the effect of hip internal rotation on the hip and lumbar spine muscle activity. Kinetic variables during gait or going up and down stairs are also needed.

  • PDF

Activation of Knee Muscles on Various Decline Boards and Postures During Single Leg Decline Squat Exercise (내림 경사대에서 한 다리 스쿼트 운동 시 경사면과 자세변화에 따른 무릎주변근의 근활성도)

  • Yoo, Won-Gyu;Yi, Chung-Hwi;Kwon, Oh-Yun;Jeon, Hye-Seon
    • Physical Therapy Korea
    • /
    • v.12 no.3
    • /
    • pp.22-30
    • /
    • 2005
  • This study was designed to identify the effect of various decline boards and postures of lower extremities on surface electromyographic (EMG) activity of knee muscles during isometric single-leg decline squat exercises. The subjects were twenty young male adults who had not experienced any knee injury and their Q-angles were within a normal range. They were asked to perform single-leg decline squat exercises in five various conditions. The EMG activities of the gluteus maximus (GM), vastus lateralis (VL), vastus medialis (VMO), tibialis anterior (TA), and gastrocnemius (GCM) muscles were recorded in five various single-leg decline squat exercises by surface electrodes and normalized by maximal voluntary isometric contraction (MVIC) values. The normalized EMG activity levels were compared using one-way ANOVA with repeated measures. The results of this study were as follows: 1) Exercises 2 and 4 produced significantly greater EMG activity of VMO than did exercise 1 ($p_{adj}$<.05/10), 2) The VMO/VL ratio of EMG activity of exercise 4 was the highest, producing a significantly greater ratio than exercise 1 ($p_{adj}$<.05/10). These results show that single-leg lateral oblique decline squat exercise is the best exercise for selective strengthening of VMO, and the posture of the contralateral leg does also affect strengthening of VMO, but we'll need to research patellofemoral joint compression for clinical application of single-leg lateral oblique decline squat exercises.

  • PDF

Relationship of EMG and Subjective Discomfort Ratings for Repetitive Handling of Lightweight Loads

  • Lee, Inseok;Jo, Sungpill
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.6
    • /
    • pp.565-575
    • /
    • 2014
  • Objective: The aim of this study is to evaluate the effect of weight of load and time on the physical workload of repetitive upper-limb tasks with handling light weight loads using EMG and perceived discomfort, and to investigate the relationship between EMG and perceived discomfort for those repetitive tasks of moving light weight loads. Background: Repetitive upper-limb motion is known as one of the main risk factors of musculoskeletal disorders, and a lot of repetitive tasks are carried out while handling light weight loads in the industry. In evaluating the workload of repetitive tasks handling light weight loads, EMG and perceived discomfort can be used, though their relationship in those work conditions are not much investigated. Method: A laboratory experiment with 18 healthy males were conducted to record EMG signals from 5 muscle sites of the right arm and shoulder and rate perceived discomforts for the body parts and the whole body while carrying out repetitive materials-handling tasks for 52min. The subjects were divided into 3 groups which handled the loads of 1kg, 2kg and 3kg, respectively. ANOVAs were conducted to analyze the effects of the weight and time on RMS of EMG amplitude (normalized RMS: NRMS), median frequency of power spectrum of EMG (normalized MDF: NMDF) and perceived discomfort. The correlations between NRMS and NMDF and perceived discomfort were also analyzed. Results: Statistically significant muscular fatigue effects were not found from NRMS and NMDF in most muscles, while there were significant increases of discomfort as the task time elapsed. It was shown that there were an increasing trend of the muscular activity as the weight of load increased and a decreasing trend of median frequency of EMG of upper and lower arms as time elapsed. It was found that there were significant negative correlations between NMDFs from the lower arm and discomfort ratings, though the relationships were weak. Conclusion: It can be concluded that the working conditions adopted in this study were not enough to induce muscular fatigue, while there was significant increase in perceived discomfort. A further study is necessary to integrate the objective and subjective measures for more reliable and sensitive evaluation of workload of repetitive tasks of handling light weight loads. Application: This study can be used as a basic study for the evaluation of workload of repetitive tasks handling light weight loads.

EMG Activities of Trunk and Lower Extremity Muscles Induced by Different Intensity of Whole Body Vibration During Bridging Exercise

  • Kim, Tack-Hoon;Choi, Houng-Sik
    • Physical Therapy Korea
    • /
    • v.16 no.4
    • /
    • pp.16-22
    • /
    • 2009
  • The purpose of this study was to investigate the trunk and lower extremity muscle activity induced by three different intensity conditions (intensity 1, 3, 5) of whole body vibration (WBV) during bridging exercise. Surface electromyography (EMG) was used to measure trunk and lower extremity muscles activity. Eleven healthy young subjects (6 males, 5 females) were recruited from university students. The collected EMG data were normalized using reference contraction (no vibration during bridging) and expressed as a percentage of reference voluntary contraction. To analyze the differences in EMG data, the repeated one-way analysis of variance was used. A Bonferroni's correction was used for multiple comparisons. The study showed that EMG activity of the rectus abdominis, external oblique, internal oblique, erector spinae and rectus femoris muscles was not significantly different among three intensity conditions of WBV during bridging exercise (p>.05). However, there were significantly increased EMG activity of the medial hamstring muscle (p=.001) and medial gastrocnemius muscle (p=.027) in the intensity 3 condition compared with the intensity 1 condition. This result can be interpreted that vibration was absorbed through the distal muscles, plantar flexor and knee flexor.

  • PDF

Analysis of Lower Extremity Muscle Activities in Parkinson's Patients for Improving to Stop Task (파킨슨 환자의 멈춤 보행 시 하지 근전도 분석)

  • Yang, Chang-Soo;Lim, Bee-Oh
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.333-339
    • /
    • 2012
  • Freezing of gait is a severely problem in people with Parkinson's disease. The purpose of this study was to investigate the muscle activities of adductor longus, gluteus medius, gluteus maximus, biceps femoris, rectus femoris, gastrocnemius, and tibialis anterior using Noraxon 8 channels EMG system during stop task in patients with Parkinson's disease. Seven parkinson's patients and age matched normal participants were recruited in the study. Filtered EMG signals were rectified, smoothed and integrated. To control for the altered timing and magnitude of activity, iEMG was normalized for time and peak value. The results indicated that the patients with Parkinson showed decreased gait cycle, stance phase, swing phase time, swing phase time ratio and increased stance phase time ratio than normal participants. The patients with Parkinson showed decreased gastrocnemius muscle activity time ratio, while increased tibialis anterior muscle activity time ratio than normal participants. During stance phase before stop, the patients with Parkinson showed relatively lower average and peak iEMG in anterior tibialis and gastrocnemius muscle than normal participants. During swing phase before stop, the patients with Parkinson showed relatively higher average iEMG in gastrocnemius muscle than normal participants. During stop phase, the patients with Parkinson showed relatively lower average and peak iEMG in anterior tibialis and gastrocnemius muscle than normal participants.

Eletromyographic Activities of Trunk and Lower Extremity Muscles During Bridging Exercise in Whole Body Vibration and Swiss Ball Condition in Elderly Women

  • Kim, Tack-Hoon;Lee, Kang-Seong
    • Physical Therapy Korea
    • /
    • v.17 no.4
    • /
    • pp.26-34
    • /
    • 2010
  • The purpose of this study was to compare the trunk and lower extremity muscle activity induced by six different conditions floor, intensity 0, 1, 3, 5 of whole body vibration (WBV), and Swiss ball during bridging exercise. Surface electromyography (EMG) was used to measure trunk and lower extremity muscles activity. Ten elderly women were recruited from Hong-sung Senior Citizen Welfare Center. The collected EMG data were normalized using reference contraction (during floor bridging) and expressed as a percentage of reference voluntary contraction (%RVC). To analyze the differences in EMG data, the repeated one-way analysis of variance was used. A Bonferroni's correction was used for multiple comparisons. The study showed that EMG activity of the rectus abdominis, external oblique, internal oblique, erector spinae and rectus abdominis muscles were not significantly different between six different conditions of during bridging exercise (p>.05). However, there were significantly increased EMG activity of the rectus femoris (p=.034) in the WBV intensity 0, 1, 3, and 5 conditions compared with the floor bridging condition. EMG activity of the medial gastrocnemius were significantly increased in the WBV intensity 0, 1, 3, 5 and Swiss ball conditions compared with the floor bridging condition. Future studies are required the dynamic instability condition such as one leg lifting in bridging.