• Title/Summary/Keyword: normal weight concrete

Search Result 177, Processing Time 0.03 seconds

Experimental investigation on steel-concrete bond in lightweight and normal weight concrete

  • Chen, How-Ji;Huang, Chung-Ho;Kao, Zhang-Yu
    • Structural Engineering and Mechanics
    • /
    • v.17 no.2
    • /
    • pp.141-152
    • /
    • 2004
  • The bonding behaviors of Lightweight Aggregate Concrete (LWAC) and normal weight concrete were investigated experimentally. Pull-out tests were carried out to measure the bond strengths of three groups of specimens with compressive strength levels of 60, 40, and 20 MPa, respectively. Test results showed that the difference in the bond failure pattern between LWAC and normal weight concrete was significant as the concrete compressive strength became lower than 40 MPa. The corresponding bond strengths of LWAC were lower than that for normal weight concrete. As the compressive strength of concrete became relatively high (> 40 MPa), a bond failure pattern in normal weight concrete occurred that was similar to that in LWAC. The bond strength of LWAC is higher than that for normal weight concrete because it possesses higher mortar strength. Stirrup use leads to an increase of approximately 20% in nominal bond strength for both types of concrete at any strength level.

A Study on Chloride Attack Resistibility in Light Weight Aggregate Concrete and Normal Weight Aggregate Concrete (보통 콘크리트와 인공경량골재 콘크리트의 염해 저항성에 관한 실험적 연구)

  • Lee, Chang-Soo;Nam, Chang-Sik;Yoo, Bo-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.197-198
    • /
    • 2010
  • The purpose of this study is to compare chloride attack resistibility of light weight aggregate concrete to chloride attack resistibility of normal concrete and confirm the utility. As a result, light weight aggregate concrete's chloride attack resistibility is lower than normal concrete's chloride attack resistibility.

  • PDF

Engineering Properties of Surlightweight Polymer Concrete (초경량 폴리머 콘크리트의 공학적 특성)

  • 성찬용;김경태
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.75-81
    • /
    • 1997
  • This study was performed to evaluate the engineering properties of surlightweight polymer concrete using synthetic lightweight aggregate. The following conclusions were drawn; 1. The unit weight was in the range of 0.849~0.969t/$m^3$, the unit weights of those concrete were decreased by 58 ~ 63% than that of the normal cement concrete. 2. The highest strength was achieved by $P_1$, and compressive strength was increased by 93% and bending strength by 364% than that of the normal cement concrete, respectively. 3. The ultrasonic pulse velocity was in the range of 2, 346~2, 702m/s, which was low compared to that of the normal cement concrete. 4. The dynamic modulus of elasticity was in the range of $1.561{\times} 10{^5}~1.916{\times} 10{^5}kgf/cm^2$, which was approximately 52~98% of that of the normal cement concrete. 5. The compressive and bending strength were increased with the increase of unit weight. But, the dynamic modulus of elasticity and ultrasonic pulse velocity were decreased with the increase of unit weight.

  • PDF

Uniaxial bond stress-slip behavior of reinforcing bars embedded in lightweight aggregate concrete

  • Tang, Chao-Wei
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.651-661
    • /
    • 2017
  • This paper presents an experimental study of bond-slip behavior of reinforced lightweight aggregate concrete (LC) and normal weight concrete (NC) with embedded steel bar. Tests were conducted on tension-pull specimens that had cross-sectional dimension with a reinforcing bar embedded in the center section. The experimental variables include concrete strength (20, 40, and 60 MPa) and coarse aggregate type (normal-weight aggregate and reservoir sludge lightweight aggregate). The test results show that as concrete compressive strength increased, the magnitudes of the slip of the LC specimens were greater than those of the NC specimens. Moreover, the bond strength and stiffness approaches zero at the loaded end, or close to the central anchored point of the specimen. In addition, the proposed bond stress-slip equation can effectively estimate the behavior of bond stress and steel bar slipping.

Mechanical properties and radiation shielding performance in concrete with electric arc furnace oxidizing slag aggregate

  • Lim, Hee Seob;Lee, Han Seung;Kwon, Seung Jun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.4
    • /
    • pp.363-371
    • /
    • 2019
  • In this study, physical properties of normal concrete, magnetite concrete, EAF concrete, and EAF concrete with added iron powder were evaluated and a feasibility of radiation shielding is also evaluated through irradiation tests against X-rays and gamma-rays. While the unit weight of EAF concrete (3.21 t/㎥) appeared lower than that of magnetite concrete (3.50 t/㎥), the results in compressive strength of EAF concrete were greater than those in magnetite and normal concrete. While the radiation transmission rate of normal concrete reaches 26.0% in the X-ray irradiation test, only 6.0% and 9.0% of transmission rate were observed in magnetite concrete and linear relationship with unit volume weight and radiation shielding. In the gamma-ray irradiation test, the performance of EAF and magnetite concretes appeared to be similar. Through the results on the excellent physical properties and radiation shielding performance a potential applicability of EAF concrete to radiation shielding was verified.

A Study on the Applicability of Shrinkage Reduction Effect of Light-weight Aggregate Concrete (경량골재 콘크리트의 수축 저감효과에 관한 적용성 연구)

  • Lim, Sang-Jun;Bang, Chang-Joon;Park, Jong-Hyok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.175-176
    • /
    • 2011
  • Applying previous studies performed in the moisture transportation characteristics and shrinkage of lightweight concrete application of shrinkage reduction is to discuss. Applicability of shrinkage reduction effect of lightweight concrete applies for the analysis of PSC girder bridge beam placed on the construction site. Stress of the concrete bridge deck, rebar quantity is calculated by effective elastic modulus method and crack risk is assessed by moisture transport and differential shrinkage analysis. After approximately 10 days maximum tensile stress occurs 6MPa, similar to the case of normal concrete, a maximum tensile stress occurs 3MPa in lightweight concrete and comparing to normal concrete stress was reduced to approximately 50%. Normal and lightweight concrete crack index, respectively, is reduced 1.6 to 1.2, 1.2 to 0.9 in surface and boundary region. Therefore, reduction in shrinkage of concrete were able to confirm reduction of crack risk.

  • PDF

An Experimental Study on the Mechanical Properties of High Performance Lightweight Polymer Concrete (고성능 경량 폴리머 콘크리트의 역학적 특성에 관한 실험적 연구)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.72-81
    • /
    • 1995
  • This study was performed to evaluate the mechanical properties of high performance lightweight polymer concrete using fillers and synthetic lightweight coarse aggregate. The following conclusions were drawn. 1. The unit weight of the G3, G4 and G5 concrete was 1.500t/m$^3$, 1.506t/m$^3$ and 1.535t/m$^3$, respectively. Specially, the unit weights of those concrete were decreased 33~35% than that of the normal cement concrete. 2. The highest strength was achieved by heavy calcium carbonate, it was increased 27% by compressive, 95% by tensile and 195% by bending strength than that of the normal cement concrete, respectively. 3. The elastic modulus was in the range of 8.0 x 104~ 10.4 x lO4kg/cm2, which was approximately 35~42% of that of the normal cement concrete. Normal cement concrete was showed relatively higher elastic modulus. 4. The ultrasonic pulse velocity of fillers was in the range of 2, 900m/sec, which was showed about the same compared to that of the normal cement concrete. Heavy calcium carbonate was showed higher pulse velocity. 5. The compressive, tensile, bending strength and ultrasonic pulse velocity were largely showed with the increase of unit weight.

  • PDF

Multi-physics Model of Moisture Related Shrinkage on Lightweight and Normal Concrete (경량콘크리트 및 일반콘크리트의 수분관련 수축에 대한 다중물리모델)

  • Lee, Chang-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.159-169
    • /
    • 2010
  • A multiphysics model analysis including moisture transport, heat transfer and solid mechanics and experiments on the normal and light weight concrete were carried out in order to study the effect of preabsorbed water in the light weight aggregates on the drying and shrinkage characteristics of concrete. Consequently, with fixed water-cement ratio, loss of water content of normal and light weight concrete were compared and the results showed that the lightweight concrete lost less moist than the normal concrete in early age and long term which was by moist supply effect. Accordingly, shrinkage strain size and distribution of lightweight concrete were decreased, and shrinkage reducing effect was efficient in early age with water cement ratio 0.3 and in both early age, and long term with water cement ratio 0.5. The comparison of analysis results and exaperimental results indicate that characteristic values of moisture transport and the relation humidity and shrinkage strain from this study are resonable for application for other differential shrinkage analysis in lightweight concrete.

A Study on the Development of the Artigicial Eco Light-Weight Aggregate using EAF-Dust and Application of the Concrete (전기로제강 분진의 복합안정화 처리를 통한 에코이공경량골재의 개발 및 콘크리트 적용 연구)

  • Lee, Jin-Woo;Kim, Kyung-Min;Jung, Chul-Hee;Bae, Yeoun-Ki;Lee, Jae-Sam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.149-152
    • /
    • 2005
  • To make artificial light-weight aggregate with EAF-dust and estimate ability to apply to concrete, characteristics of the aggregate were considered in density, weight of unit volume, fineness modulus and so on. And then it was executed to experiments of the concrete mixed with the light-weight aggregate. As it was results that artificial light-weight aggregate with EAF-dust was heavier and more watertight than with only clay, concrete weight of unit volume was heavier than with expended clay aggregate. But it was regarded that concrete with EAF-dust artificial aggregate was able to field application as light-weight concrete because concrete of the weight of unit volume was lighter and compress strength and workability were similar to normal concrete.

  • PDF

An Experimental Study on Nondestructive Properties of Crushed Oyster Shell Concrete (패분 콘크리트의비파괴 특성에 관한 실험적 연구)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.2
    • /
    • pp.93-98
    • /
    • 2000
  • This study is performed to evalute experimentally the nondestructive properties on the concrete that is treated with crushed oyster shell powder of 0.15m or smaller in diameter. The ultrsonic pulse velocity of crushed oyster shell concrete(COSC) is in the range of 4.110-4.267m/s, and the dynamic modulus of elasticity of COSC range from 288$\times$10$^3$ to 318 $\times$10$^3$kgf/$\textrm{cm}^2$. The ultrasonic pulse velocity and dynamic modulus of elasticity are similar to those of normal portland cement concrete. The highest ultrasonic pulse velocity and dynamic modulus of COSC are measured at the 2.5% addition rate by weight of crushed oyster shell powder. The acid-resistance in increased of the content of crushed oyster shell powder. The acid-resistance of COSC with 15% addition rate by weight of crushed oyster shell power is 1.6 times greater than that of normal portland cement concrete. It is concluded that the addition of crushed oyster shell powder to normal portland cement concrete contributed to improve the nondestructive properties of concrete.

  • PDF