• Title/Summary/Keyword: normal transient

Search Result 375, Processing Time 0.026 seconds

Properties of Thermal Expansion Strain of Light Weight Aggregate Concrete with Loading Conditions (하중조건에 따른 경량골재 콘크리트의 열팽창변형 특성)

  • Yoon, Min-Ho;Kim, Gyu-Yong;Lee, Tae-Gyu;Nam, Jeong-Soo;Shin, Kyoung-Su;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.255-256
    • /
    • 2012
  • In this study, strain properties of high strength concrete using light weight aggregate which is widely used in recent years are evaluated. For these purpose, thermal strain, transient creep were measured in prestressed condition as 0, 20, 40% of specimen strength at target temperature with 60MPa specimens which was using normal and light weight aggregate. As a result, light weight aggregate is more advantageous for the control of strain than normal aggregate because of its low thermal expansion.

  • PDF

A Study on the Normal-zone Propagation Velocity in a Superconducting Coil (초전도 코일의 국부 퀜치 발생시 상전도영역 전파속도 해석)

  • 배진한;서용석;오윤상;고태국
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1041-1049
    • /
    • 1994
  • Longitudimal and transverse normal zone propagations in the superconducting coil are analyzed and propagation velocity is derived from the heat balance equations in the propagating boundary region. The results of applying to the specific superconducting wire show that propagation velocity is linearly proportional to the transport current and increasing ramp current speeds up the longitudinal velocity by 1.22[m/s] under the applied field of 2T. Transient heat transfer has a significant effect on the normal zone propagation velocity and it decreases longitudinal velocity by 5.2[m/s] under the applied field of 2T as being compared to the steady-state heat transfer. Increasing ramp current speeds up the Z-axis transverse propagation velocity by 0.042[m/s] and transverse velocity of R and Z axis is costant regardless of the current flows.

Design and Behavior of Validating Surge Protective Devices in Extra-low Voltage DC Power Lines (특별저전압 직류 전원회로에 유용한 서지방호장치의 설계와 특성)

  • Shim, Seo-Hyun;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.3
    • /
    • pp.81-87
    • /
    • 2015
  • In order to effectively protect electrical and electronic circuits which are extremely susceptible to lightning surges, multi-stage surge protection circuits are required. This paper presents the operational characteristics of the two-stage hybrid surge protection circuit in extra-low voltage DC power lines. The hybrid surge protective device consists of the gas discharge tube, transient voltage suppressor, and series inductor. The response characteristics of the proposed hybrid surge protective device to combination waves were investigated. As a result, the proposed two-stage surge protective device to combination wave provides the tight clamping level of less than 50V. The firing of the gas discharge tube to lightning surges depends on the de-coupling inductance and the rate-of-change of the current flowing through the transient voltage suppressor. The coordination between the upstream and downstream components of the hybrid surge protective device was satisfactorily achieved. The inductance of a de-coupler in surge protective circuits for low-voltage DC power lines, relative to a resistance, is sufficiently effective. The voltage drop and power loss due to the proposed surge protective device are ignored during normal operation of the systems.

The Performance Evaluation of NSSS Control Systems for UCN 4

  • Sohn, Suk-Whun;Song, In-Ho;Sohn, Jong-Joo;Park, Jong-Ho;Seo, Jong-Tae
    • Nuclear Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.339-348
    • /
    • 2001
  • NSSS Control Systems automatically mitigate transient conditions and leads to a stable plant condition without operator actions when a transient occurs during normal power operation. In this paper, the function and performance of NSSS control systems were examined and evaluated by comparing the predicted results with the measured data for the selected events. Loss of a Main Feedwater Pump and Load Rejection to House Load Operation events were selected for the evaluation among the transient tests peformed during the Power Ascension Test (PAT) of UCN unit 4. The overall schematic control actions of NSSS control systems can be evaluated easily through the observation of these two typical events. The selected events were analyzed by the KISPAC computer code[l] which had been used in developing the control logic and determining the control setpoints during the plant design. Additionally, the performance of FWCS during low power operation was evaluated. The result of evaluation showed that the NSSS control systems were designed properly and the performance of the NSSS control systems was excellent and also the computer code had a good prediction capability.

  • PDF

On the extended period of a frequency domain method to analyze transient responses

  • Chen, Kui Fu;Zhang, Qiang;Zhang, Sen Wen
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.211-223
    • /
    • 2009
  • Transient response analysis can be conducted either in the time domain, or via the frequency domain. Sometimes a frequency domain method (FDM) has advantages over a time domain method. A practical issue in the FDM is to find out an appropriate extended period, which may be affected by several factors, such as the excitation duration, the system damping, the artificial damping, the period of interest, etc. In this report, the extended period of the FDM based on the Duhamel's integral is investigated. This Duhamel's integral based FDM does not involve the unit impulse response function (UIRF) beyond the period of interest. Due to this fact, the ever-lasting UIRF can be simply set as zero beyond the period of interest to shorten the extended period. As a result, the preferred extended period is the summation of the period of interest and the excitation duration. This conclusion is validated by numerical examples. If the extended period is too short, then the front portion of the period of interest is more prone to errors than the rear portion, but the free vibration segment is free of the wraparound error.

The Elementary Study on the Development of a Sensor for Measurement of Steel Corrosion by Transient Electro-Magnetic (TEM) Method (TEM 법에 의한 철근 부식 측정 센서 개발에 대한 기초 연구)

  • 이상호;한정섭
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.57-66
    • /
    • 2001
  • In order to measure steel corrosion in mortar by a transient electro-magnetic (TEM) Method, the development of the sensors have been studied. The sensors were made of enamelled wire with diameter of 0.25mm and Acril. The sensor configuration was used as a coincident loop type. The secondary electro motive force(EMF) was measured with SIROTEM III. The accelerator was equipped with the SIROTEM III. The accelerator permits the transmitter to turn off approximately 10~15 times faster than normal. The high resolution time series used for very shallow or high resistivity investigation was selected. The steels were embedded in mortar which were made from sand : cement : water ratio of 2 : 1: 0.5. The mortar specimen was 50cm long, 20cm wide and 10cm thick. To investigate steel corrosion in mortar, the sensors used were with 2$\times$2$cm^2$(3, 6, 9$\Omega$), 3$\times$3$cm^2$(3, 6, 9$\Omega$) and 6$\times$6$cm^2$(3, 6, 9$\Omega$). The obtained result obtained showed that the sensor 8(6$\times$6$cm^2$, 6$\Omega$) was the proper sensor for the measurement of steel corrosion in mortar.

  • PDF

Low-Dose Radiation Stimulates the Proliferation of Normal Human Lung Fibroblasts Via a Transient Activation of Raf and Akt

  • Kim, Cha Soon;Kim, Jin Kyoung;Nam, Seon Young;Yang, Kwang Hee;Jeong, Meeseon;Kim, Hee Sun;Kim, Chong Soon;Jin, Young-Woo;Kim, Joon
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.424-430
    • /
    • 2007
  • The biological effects of low-dose radiation have been investigated and debated for more than a century, but its cellular effects and regulatory mechanisms remain poorly understood. This study shows the human cellular responses to low-dose radiation in CCD-18 Lu cells, which are derived from normal human lung fibroblasts. We examined a colony-forming assay for cell survival by ionizing radiation. Live cell counting and cell cycle analysis were measured for cell proliferation and cell cycle progression following low-dose irradiation. We examined Raf and Akt phosphorylation to determine the proliferation mechanism resulting from low-dose radiation. We also observed that p53 and p21 were related to cell cycle response. We found that 0.05 Gy of ionizing radiation enhanced cell proliferation and did not change the progression of the cell cycle. In addition, 0.05 Gy of ionizing radiation transiently activated Raf and Akt, but did not change phospho-p53, p53 and p21 in CCD-18 Lu cells. However, 2 Gy of ionizing radiation induced cell cycle arrest, phosphorylation of p53, and expression of p53 and p21. The phosphorylation of Raf and Akt proteins induced by 0.05 Gy of ionizing radiation was abolished by pre-treatment with an EGFR inhibitor, AG1478, or a PI3k inhibitor, LY294002. Cell proliferation stimulated by 0.05 Gy of ionizing radiation was blocked by the suppression of Raf and Akt phosphorylation with these inhibitors. These results suggest that 0.05 Gy of ionizing radiation stimulates cell proliferation through the transient activation of Raf and Akt in CCD-18 Lu cells.

Elastic Wave Propagation in Monoclinic System Due to Transient Line Load

  • Kim, Yong-Yun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.2E
    • /
    • pp.53-58
    • /
    • 1998
  • In this paper, we study the response of several anisotropic systems to buried transient line loads. The problem is mathematically formulated based on the equations of motion in the constitutive relations. The load is in form of a normal stress acting with arbitrary axis on the plane of monoclinic symmetry. Plane wave equation is coupled with vertical shear wave, longitudinal wave and horizontal shear wave. We first considered the equation of motion in reference coordinate system, where the line load is coincident with symmetry axis of the orthotrioic material. Then the equation of motion is transformed with respect to general coordiante system with azimuthal angle by using transformation tensor. The load is first described as a body force in the equations of the motion for the infinite media and then it is mathematically characterized. Subsequently the results for semi-infinite spaces is also obtained by using superposition of the infinite medium solution together with a scattered solution from the free surface. Consequently explicit solutions for the displacements are obtained by using Cargniard-DeHoop contour. Numerical results which are drawn from concrete examples of orthotropic material belonging to monoclinic symmetry are demonstrated.

  • PDF

A Study on the Real-time Micro Control of WEDM Process for the Improvement of Discharging Stability (WEDM 프로세스의 방전 안정성 향상을 위한 실시간 미세제어에 관한 연구)

  • Kwon Shin;Nam Sung-Ho;Yang Min-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.27-36
    • /
    • 2005
  • Some studies have shown that unstable factors are inherent in WEDM process, causing the instability of the discharging pulse to reach about 40∼60% in normal machining. Transient stability is an important subject in WEDM process since there is a close relationship between stability and machining performance, such as the characteristics of a machined surface, machining speed and problem of instability like wire rupture phenomenon. Among the many machining parameters affecting WEDM machining state, three specific parameters (Vr, Ip, off time ) are major controllable variables that can be applied in transient stability control. And, this research investigates the implementation and analysis of real-time micro control of the discharging stability of WEDM (Wire Electric Discharge Machining) process.

A Study on Transient Chip Formation in Cutting with Self-Propelled Rotary Tools-Experimental Verification (자기추진 로타리 공구를 사용한 절삭에서 천이칩 형성에 관한 연구 - 실험에 의한 증명)

  • 최기흥;최기상;김정수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1910-1920
    • /
    • 1993
  • An experimental study to investigate the unconventional chip formation called triangulation of chip in cutting with a SPRT (self-propelled rotary tool) is performed using acoustic emission (AE) signal analysis. In doing that, a quantitative model of the AE RMS signal in triangulation with a SPRT is first developed. The predicted results from this model show good correlation between the AE RMS signal and the general characteristics of triangular chip formation. Then, effects of various process parameters such as cutting conditions (cutting speed, depth of cut, oblique angle and normal rake angle) and the work material properties on the chip formation in cutting with a SPRT are explored. Special attention is paid to the work material properties which are found to have significant effects on triangulation.