• 제목/요약/키워드: normal plate

Search Result 690, Processing Time 0.022 seconds

Deformation Characteristics of Compound Curved Plate Bending by Asymmetric Rollers (상하 비대칭 롤러를 이용한 이중곡면 성형의 변형특성에 대한 연구)

  • 최양렬;신종계
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.38-43
    • /
    • 2002
  • Die-less forming is a cold forming process which is to bend thick flat plates into compound curved plates using two asymmetric rollers. This forming method has several advantages compared with line heating which is widely used to fabricate compound curved pieces in shipyards. The die-less forming, however, has scarcely been studied. Even the deformation mechanism in this forming process has not been understood clearly. So, in this paper, the deformation characteristics of die-less forming is investigated analytically and numerically. for the analytic investigation, slab method based on equilibrium equation is applied. And the mechanism of curvature generation is derived for the asymmetry in roller applied. And three dimensional numerical analyses are performed with realistic modeling of interactions between the rollers and work-piece using finite element program, ABAQUS. It is shown that curvature generation is mainly due to the difference of normal positive strain distribution between the top and bottom surface of the work-piece. And a convex-type curved plate is formed if the center region of the work-piece is rolled with asymmetric rollers of which the lower is larger than the upper in diameter.

Optimal Design of Bipolar-Plates for a PEM Fuel Cell (고분자 전해질 연료전지용 분리판 최적 설계)

  • Han, In-Su;Jeong, Jee-Hoon;Lim, Jong-Koo;Lim, Chan;Jung, Kwang-Sup
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.99-102
    • /
    • 2006
  • Optimal flow-field design of bipolar-plates for a commercial class PEM(polymer electrolyte membrane) fuel cell stack was carried out on the basis of three-dimensional computational fluid dynamics(CFD) simulation. A three-dimensional CFD model originally developed by Shimpalee et al., has been utilized for performing large-scale simulation of a single fuel cell consisting of bipolar-plates gas diffusion layers, and a membrane-electrode-assembly(MEA). The CFD model is able to predict the current density, pressure drops, gas velocities, vapor and liquid water contents, temperature distributions, etc. inside a single fuel cell. Depending on simulation results from the CFD modeling of a PEM fuel cell, several flow-fields of bipolar-plates were designed and verified. The final design of the bipolar-plate has been chosen from the simulations and experimental tests and showed the best performance as expected from the simulation results under a normal operating condition. Thus, the CFD simulation approach to design the optimal flow-field of the bipolar-plates was successful. The final design was adopted as the best flow-field to build a commercial scale PEM fuel cell stack, the performance of which shows about 42% higher than that of the older bipolar-plate design.

  • PDF

Evaluation of Menu Quality Mangement in Business & Industry Contract Foodservice on Customer's Viewpoint (사업체 위탁 급식소에서 제공되는 메뉴에 대한 고객 측면에서의 품질 관리 평가)

  • 이해영
    • Journal of Nutrition and Health
    • /
    • v.32 no.8
    • /
    • pp.967-973
    • /
    • 1999
  • The purpose of this study was to analyze sensory evaluation, to assess visual serving size and plate waste estimates of daily menu, and the identify customer expectation, perception and satisfaction. Questionnaires of sensory evaluation, serving size and were waste were developed and hand-delivered to 2,520 people. A total of 2,255 questionnaires were usable: a 89.5% response rate. Customer satisfaction questionnaires were handed out to 700 customers: (100 each at seven operations). A total of 551 were returned completed (78.7%). The data was analyzed using the SAS package program for Descriptive Analysis, t-test and ANOVA. The result of sensory evaluation showed that 'taste' was 3.20, 'freshness' 3.17, 'temperature' 3.25, 'texture' 3.15, 'appearance' 3.12, 'overall evaluation' 3.21, so these were little higher than 「normal」, that is 3.0. There was positive correlation among 'taste', 'freshness', 'temperature', 'texture', 'appearance' and 'overall evaluation'(p<.001). Serving size score was 2.97 and plate waste was 4.87, thus plate waste percentage was about 22-33%. As the result of customer expectation, perception and satisfaction of menu quality, characteristics. Customer satisfaction was defined as the difference expectation and perception and customer perceptions in theis survey were lower than expectation, thus this result implied customers dissatisfied in all menu quality characteristics. IPA analysis showed that 'diversity of menu selection' and 'menu price' was included in A area 'Focus here'.

  • PDF

Effects of CNTs waviness and aspect ratio on vibrational response of FG-sector plate

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.649-661
    • /
    • 2017
  • This paper is motivated by the lack of studies in the technical literature concerning to the influence of carbon nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite annular sector plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) plate has smooth variation of CNT fraction based on the power-law distribution in the thickness direction, and the material properties are also estimated by the extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. Parametric studies are carried out to highlight the influence of CNTs volume fraction, waviness and aspect ratio, boundary conditions and elastic foundation on vibrational behavior of FG-CNT thick sectorial plates. The study is carried out based on three-dimensional theory of elasticity and in contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this approach does not neglect transverse normal deformations. The annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. For an overall comprehension on 3-D vibration of annular sector plates, some mode shape contour plots are reported in this research work.

A high-order closed-form solution for interfacial stresses in externally sandwich FGM plated RC beams

  • Chedad, Abdebasset;Daouadji, Tahar Hassaine;Abderezak, Rabahi;Belkacem, Adim;Abbes, Boussad;Rabia, Benferhat;Abbes, Fazilay
    • Advances in materials Research
    • /
    • v.6 no.4
    • /
    • pp.317-328
    • /
    • 2017
  • In this paper, an improved theoretical solution for interfacial stress analysis is presented for simply supported concrete beam bonded with a sandwich FGM plate. Interfacial stress analysis is presented for simply supported concrete beam bonded with a sandwich plate. This improved solution is intended for application to beams made of all kinds of materials bonded with a thin plate, while all existing solutions have been developed focusing on the strengthening of reinforced concrete beams, which allowed the omission of certain terms. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite beam. A numerical parametric study was performed for different simulated cases to assess the effect of several parameters. Numerical comparisons between the existing solutions and the present new solution enable a clear appreciation of the effects of various parameters. The results of this study indicated that the FGM sandwich panel strengthening systems are effective in enhancing flexural behavior of the strengthened RC beams.

A study on reducing temperature rise of twin-glass evacuated tube solar collector during summer time (이중진공관형 태양열 집열기의 하절기 과열 방지에 대한 연구)

  • Bai, Sang-Eun;Bai, Cheol-Ho;Nam, Hyun-Kyu;Shin, Ki-Yeol;Yoo, In-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.36-41
    • /
    • 2013
  • The reflection plate in twin-glass evacuated tube solar collector is controlled to reduce the overheat during the summer time. The sliding type and folding types are suggested and tested. The sliding type changes the plate angle and the folding type changes the opening angle of the reflection plate. By scattering the focus of the reflected radiation from the reflection plate, the temperature rise of the working fluid can be reduced. The sliding type shows the best results in overheat reduction. When solar radiation is 900 $W/m^2$, the temperature rise in one sliding type collector is reduced about $2^{\circ}C$ compared to that of the normal solar collector. When this method is applied to seven series-collectors in the field, the reduction of temperature rise during the summer time should be significant.

Structural Performance Evaluation on the Slab with the SFRC and Steel Deck-plate (데크플레이트를 사용한 강섬유보강콘크리트 슬래브의 구조성능 평가)

  • Hong, Geon-Ho;Chae, Byung-Min
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.7
    • /
    • pp.3-10
    • /
    • 2018
  • Steel fiber reinforced concrete can improve the resistance to cracking by adding steel fibers when mixing concrete. It can reduce the temperature and shrinkage cracks, and its flexural performance can be improved by increasing the effective moment of inertia. In this study, the deck-plate was used to replace the concrete form and reinforcing bars, and the steel fiber reinforced concrete was used to control the shrinkage and temperature cracks, and improve the flexural performance of the slab. Total 9 slab specimens were tested for analyzing the structural performance and serviceability. As a results, flexural capacity of the slab with deck-plate was evaluated to be superior to that of the normal reinforced concrete slab specimens with the same tensile reinforcement. The steel fiber reinforced concrete was found to have about 8% flexural capacity increase depending on the steel fiber content $15.7kg/m^3$. Also, in terms of flexural stiffness, the specimens using steel fiber reinforced concrete for the same parameters were evaluated to have a stiffness increase of about 30% compared with the case of using ordinary concrete. Especially, it was found that the stiffness of the test results was significantly higher than the analytical result because the increase of the tensile strength of the steel fiber reinforced concrete is not reflected in the current structural code.

Impact of porosity distribution on static behavior of functionally graded plates using a simple quasi-3D HSDT

  • Farouk Yahia Addou;Fouad Bourada;Mustapha Meradjah;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mofareh Hassan Ghazwani;Ali Alnujaie
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.87-97
    • /
    • 2023
  • The bending of a porous FG plate is discussed in this study using a novel higher quasi-3D hyperbolic shear deformation theory with four unknowns. The proposed theory takes into consideration the normal and transverse shear deformation effect and ensures the parabolic distribution of the transverse stresses through the thickness direction with zero-traction at the top and the bottom surfaces of the structure. Innovative porous functionally graded materials (FGM) have through-thickness porosity as a unique attribute that gradually varies with their qualities. An analytical solution of the static response of the perfect and imperfect FG plate was derived based on the virtual work principle and solved using Navier's procedure. The validity and the efficiency of the current model is confirmed by comparing the results with those obtained by others solutions. The comparisons showed that the present model is very efficient and simple in terms of computation time and exactness. The impact of the porosity parameter, aspect ratio, and thickness ratio on the bending of porous FG plate is shown through a discussion of several numerical results.

THE CLINICAL STUDY OF MANDIBULAR FRACTURE

  • Lee, Dong-Keun;Yim, Chang-Joon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.11 no.1
    • /
    • pp.69-77
    • /
    • 1989
  • This is a retrospective study on 219 patients with mandibular fracture. The patients were treated in the Dept. of Oral Maxillofacial Surgery of WON KWANG UNIV. HOSPITAL from Aug. 1, 1984 to Sept. 30. 1988. The results were as follows. 1. The mandibular fractures occured most frequently in the twenties(35%) and male were predominant (74.7%) than females. 2. The most frequent etiologic factor was traffic accident(34.3%). 3. The most common location of fracture was symphysis(37.1%). And angle(27.6%), condyle(25.7%), ramus(1.6%) were next in order of frequency. 4. In mandible fracture, they have an average 1.8 fracture line. 5. The use of plate & screw system were more increased in the comparison of each year. 6. Intermaxillary fixation period was more reduced from the concept of 6 weeks fixation, due to the use of Plate & screw system. 7. Postoperative acute wound infection was developed 9.6% in 219 mandibular fracture patients. The compression osteosynthesis was most common cause of acute wound infection than any other treatment method. 8. Postoperative malocclusion was developed 4% in 219 mandibular fracture. And the compression osteosynthesis was most common cause of malocclusion. 9. Acute wound infection was detailed by the approach method. The Intraoral & extraoral combination method was most common cause on acute infection and intraoral, extraoral approach method was next in order of frequency. 10. Normal mouth opening process was proportioned to IMF period. The short IMF period have a fast normal mouth opening process.

  • PDF

Effects of thickness stretching in FGM plates using a quasi-3D higher order shear deformation theory

  • Adim, Belkacem;Daouadji, Tahar Hassaine
    • Advances in materials Research
    • /
    • v.5 no.4
    • /
    • pp.223-244
    • /
    • 2016
  • In this paper, a higher order shear and normal deformation theory is presented for functionally graded material (FGM) plates. By dividing the transverse displacement into bending, shear and thickness stretching parts, the number of unknowns and governing equations for the present theory is reduced, significantly facilitating engineering analysis. Indeed, the number of unknown functions involved in the present theory is only five, as opposed to six or even greater numbers in the case of other shear and normal deformation theories. The present theory accounts for both shear deformation and thickness stretching effects by a hyperbolic variation of ail displacements across the thickness and satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate without requiring any shear correction factor. Equations of motion are derived from Hamilton's principle. Analytical solutions for the bending and free vibration analysis are obtained for simply supported plates. The obtained results are compared with three-dimensional and quasi- three-dimensional solutions and those predicted by other plate theories. It can be concluded that the present theory is not only accurate but also simple in predicting the bending and free vibration responses of functionally graded plates.