• Title/Summary/Keyword: normal plate

Search Result 679, Processing Time 0.029 seconds

An Assessment of Factors Affecting Plate Waste and Its Effects in Normal & Soft Diets Provided from Hospital Foodservice (병원 환자급식 중 일반식과 연식에서 발생되는 잔반의 원인과 손실 분석)

  • 양일선;김정려;이해영
    • Korean Journal of Community Nutrition
    • /
    • v.6 no.5
    • /
    • pp.830-836
    • /
    • 2001
  • The purposes of this study were to : (a) analyze the portion size & plate waste of normal & soft diets provided by dietetic departments in hospital, (b) investigate the factors affecting plate waste, and (c) determine the nutritional & monetary value of plate waste. A questionnaire for food preference and sensory evaluation was developed and a survey was carried out for the 46 normal diet and 56 soft diet patients in Sanggye Paik hospital in Seoul. Serving size and plate waste were weighed by the electric scale, and CAN-Pro program was used to evaluate the nutrition value. The data were analyzed using the SAS package program for descriptive analysis, t-test, ANOVA, and Pearson correlation. The average plate waste rate for normal diet and soft diet were 30.3% and 49.6%. More plate waste amount occurred on female patients'diet than male patients'diets regardless of the kind of diet. The plate waste percentage of male patients were higher than those of female on normal diet. On soft diet, patients who hospitalized in surgery or pediatrics department were higher than in other wards. Plate waste of normal diet and amount were correlated positively, but wastage and preference were correlated negatively Negative correlation was between taste and plate waste, and between temperature and plate waste, too. On the other hand, plate waste caused the deficiency of some nutrients such as Ca, Fe, Vit. B$_2$and a great monetary loss.

  • PDF

Unsteady 2-D flow field characteristics for perforated plates with a splitter

  • Yaragal, Subhash C.
    • Wind and Structures
    • /
    • v.7 no.5
    • /
    • pp.317-332
    • /
    • 2004
  • Wind tunnel experiments were conducted under highly turbulent and disturbed flow conditions over a solid/perforated plate with a long splitter plate in its plane of symmetry. The effect of varied level of perforation of the normal plate on fluctuating velocities and fluctuating pressures measured across and along the separation bubble was studied. The different perforation levels of the normal plate; that is 0%, 10%, 20%, 30%, 40% and 50% are studied. The Reynolds number based on step height was varied from $4{\times}10^3$ to $1.2{\times}10^4$. The shape and size of the bubble vary with different perforation level of the normal plate that is to say the bubble is reduced both in height and length up to 30% perforation level. For higher perforation of the normal plate, bubble is completely swept out. The peak turbulence value occurs around 0.7 to 0.8 times the reattachment length. The turbulence intensity values are highest for the case of solid normal plate (bleed air is absent) and are lowest for the case of 50% perforation of the normal plate (bleed air is maximum in the present study). From the analysis of data it is observed that $\sqrt{\overline{u^{{\prime}2}}}/(\sqrt{\overline{u^{{\prime}2}}})_{max}$, (the ratio of RMS velocity fluctuation to maximum RMS velocity fluctuation), is uniquely related with dimensionless distance y/Y', (the ratio of distance normal to splitter plate to the distance where RMS velocity fluctuation is half its maximum value) for all the perforated normal plates. It is interesting to note that for 50% perforation of the normal plate, the RMS pressure fluctuation in the flow field gets reduced to around 60% as compared to that for solid normal plate. Analysis of the results show that the ratio [$C^{\prime}_p$ max/$-C_{pb}(1-{\eta})$], where $C^{\prime}_p$ max is the maximum coefficient of fluctuating pressure, $C_{pb}$ is the coefficient of base pressure and ${\eta}$ is the perforation level (ratio of open to total area), for surface RMS pressure fluctuation levels seems to be constant and has value of about 0.22. Similar analysis show that the ratio $[C^{\prime}_p$ max/$-C_{pb}(1-{\eta})]$ for flow field RMS pressure fluctuation levels seems to be constant and has a value of about 0.32.

Bending analysis of thick functionally graded piezoelectric rectangular plates using higher-order shear and normal deformable plate theory

  • Dehsaraji, M. Lori;Saidi, A.R.;Mohammadi, M.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.259-269
    • /
    • 2020
  • In this paper, bending-stretching analysis of thick functionally graded piezoelectric rectangular plates is studied using the higher-order shear and normal deformable plate theory. On the basis of this theory, Legendre polynomials are used for approximating the components of displacement field. Also, the effects of both normal and shear deformations are encountered in the theory. The governing equations are derived using the principle of virtual work and variational approach. It is assumed that plate is made of piezoelectric materials with functionally graded distribution of material properties. Hence, exponential function is used to modify mechanical and electrical properties through the thickness of the plate. Finally, the effect of material properties, electrical boundary conditions and dimensions are investigated on the static response of plate. Also, it is shown that results of the presented model are close to the three dimensional elasticity solutions.

Cylindrical bending of multilayered composite laminates and sandwiches

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.2
    • /
    • pp.113-148
    • /
    • 2016
  • In a whole variety of higher order plate theories existing in the literature no consideration is given to the transverse normal strain / deformation effects on flexural response when these higher order theories are applied to shear flexible composite plates in view of minimizing the number of unknown variables. The objective of this study is to carry out cylindrical bending of simply supported laminated composite and sandwich plates using sinusoidal shear and normal deformation plate theory. The most important feature of the present theory is that it includes the effects of transverse normal strain/deformation. The displacement field of the presented theory is built upon classical plate theory and uses sine and cosine functions in terms of thickness coordinate to include the effects of shear deformation and transverse normal strain. The theory accounts for realistic variation of the transverse shear stress through the thickness and satisfies the shear stress free conditions at the top and bottom surfaces of the plate without using the problem dependent shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of minimum potential energy. The accuracy of the proposed theory is examined for several configurations of laminates under various static loadings. Some problems are presented for the first time in this paper which can become the base for future research. For the comparison purpose, the numerical results are also generated by using higher order shear deformation theory of Reddy, first-order shear deformation plate theory of Mindlin and classical plate theory. The numerical results show that the present theory provides displacements and stresses very accurately as compared to those obtained by using other theories.

Analysis of the thermal instability of laminated composite plates

  • H. Mataich;A. El Amrani;B. El Amrani
    • Coupled systems mechanics
    • /
    • v.13 no.2
    • /
    • pp.95-113
    • /
    • 2024
  • In this paper, we will analyse the thermo-elastic behavior of the plate element of a structure arranged in a climatically aggressive environment (extreme temperature), we use a refined four-variable thick plate theory to take the shear effect into consideration, the proposed theory less computationally expensive and more accurate so that it incorporates the shear effect into the formulation. The plate is assumed to be simply supported on its four edges, so exact (closed-form) solutions are found according to the Navier expansion, and the governing stability equations and associated boundary conditions of the problem are obtained via the virtual works principle. The plate studied ismade of laminated composite materials, so a parametric study is needed to see the effect of different types of parameters and coupling on the critical temperature value causing thermo-elastic instability of the plate and also on the natural frequency of free vibration, as well as for other parameters such as anisotropy, slenderness and aspect ratio of the plate and finally the lamination angle. Numerical results are obtained for specially orthotropic and antisymmetrical plates and are compared with those obtained by othertheoriesin the literature to validate the analysis approach used.

Mechanical buckling of functionally graded plates using a refined higher-order shear and normal deformation plate theory

  • Zenkour, A.M.;Aljadani, M.H.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.6
    • /
    • pp.615-632
    • /
    • 2018
  • Mechanical buckling of a rectangular functionally graded plate is obtained in the current paper using a refined higher-order shear and normal deformation theory. The impact of transverse normal strain is considered. The material properties are microscopically inhomogeneous and vary continuously based on a power law form in spatial direction. Navier's procedure is applied to examine the mechanical buckling behavior of a simply supported FG plate. The mechanical critical buckling subjected to uniaxial and biaxial compression loads are determined. The numerical investigation are compared with the numerical results in the literature. The influences of geometric parameters, power law index and different loading conditions on the critical buckling are studied.

An efficient partial mixed finite element model for static and free vibration analyses of FGM plates rested on two-parameter elastic foundations

  • Lezgy-Nazargah, M.;Meshkani, Z.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.665-676
    • /
    • 2018
  • In this study, a four-node quadrilateral partial mixed plate element with low degrees of freedom (dofs) is developed for static and free vibration analysis of functionally graded material (FGM) plates rested on Winkler-Pasternak elastic foundations. The formulation of the presented finite element model is based on a parametrized mixed variational principle which is developed recently by the first author. The presented finite element model considers the effects of shear deformations and normal flexibility of the FGM plates without using any shear correction factor. It also fulfills the boundary conditions of the transverse shear and normal stresses on the top and bottom surfaces of the plate. Beside these capabilities, the number of unknown field variables of the plate is only six. The presented partial mixed finite element model has been validated through comparison with the results of the three-dimensional (3D) theory of elasticity and the results obtained from the classical and high-order plate theories available in the open literature.

A Study on Strength of shear Connectors in Composite Beams of Steel and Lightweight Concrete Slabs with Deck Plate (덱크플레이트를 사용한 경량콘크리트 슬래브와 철골보의 합성보에서 쉬어코넥터의 내력에 관한 연구)

  • 김종식;박성무
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.293-298
    • /
    • 1995
  • The strength of shear connectors embedded in lightweight concrete slab with deck plate is influenced by various factors of deck plate, shear conncetor and concrete. Generally, it is reported that the strength of shear connector in lightweight concrete decreases in comparison with that in normal concrete. So this paper is to use compressive strength of lilghtweight concrete, width-height ratio of deck plate, and cross sectional area of shear conncetor as variables, to evaluate the strength of shear conncetors in composite beam of steel and lilghtweight concrete slabs with deck plate, and then to suggest the reasonable strength equation by comparing the push-out test results with establixhed strength formula. As the result of 24 specimens test, in case of lightweight concrete slab with deck plate, it has showed that in the same strength, the strength of shear connector decreased about 10~20% in comparison with that in normal concrete. In spite of lightweight concrete, the test results were closely approached the established strength formula of shear connector using Fisher's reduction coefficient.

  • PDF

A Study to Improve Bonding Strength of Strengthening Plate with Notches (노치를 이용한 보강재의 부착력 증가 방안에 관한 연구)

  • Han, Man-Yop;Song, Byeong-Pyo;Lee, Kwang-Myong
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.129-139
    • /
    • 1999
  • Recently, many strengthening methods are developed and used to rehabilitate existing structures. One of the old and popular methods is strengthening with bonding steel plate. However, steel plate bonding method has a defect, which is debonding failure of steel plate before yielding of the plate due to stress concentration at the of the bonded plate. The objective of this study is the experimental verification of the improved bonding properties of a strengthening plate with notches. Two normal beams and ten strengthened beams with steel plate, which have several different notches, are tested and showed their effectiveness. Test results show that the notches of strengthening plate significantly improve post-yielding behavior, compared to normally strengthened beams. It is proved that the notches of strengthening plate increases ultimate strength 14% more than normal strengthened beam after yield strength. As for the shape of notches, arc notch is the best. and triangle notch and trapezoidal notch are the next and end welding method has no effect.