• Title/Summary/Keyword: normal number mod 2

Search Result 3, Processing Time 0.014 seconds

ON THE SIGNED TOTAL DOMINATION NUMBER OF GENERALIZED PETERSEN GRAPHS P(n, 2)

  • Li, Wen-Sheng;Xing, Hua-Ming;Sohn, Moo Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.2021-2026
    • /
    • 2013
  • Let G = (V,E) be a graph. A function $f:V{\rightarrow}\{-1,+1\}$ defined on the vertices of G is a signed total dominating function if the sum of its function values over any open neighborhood is at least one. The signed total domination number of G, ${\gamma}^s_t(G)$, is the minimum weight of a signed total dominating function of G. In this paper, we study the signed total domination number of generalized Petersen graphs P(n, 2) and prove that for any integer $n{\geq}6$, ${\gamma}^s_t(P(n,2))=2[\frac{n}{3}]+2t$, where $t{\equiv}n(mod\;3)$ and $0 {\leq}t{\leq}2$.

ON THE γ-TH HYPER-KLOOSTERMAN SUMS AND A PROBLEM OF D. H. LEHMER

  • Tianping, Zhang;Xifeng, Xue
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.4
    • /
    • pp.733-746
    • /
    • 2009
  • For any integer k $\geq$ 2, let P(c, k + 1;q) be the number of all k+1-tuples with positive integer coordinates ($a_1,a_2,...,a_{k+1}$) such that $1{\leq}a_i{\leq}q$, ($a_i,q$) = 1, $a_1a_2...a_{k+1}{\equiv}$ c (mod q) and 2 $\nmid$ ($a_1+a_2+...+a_{k+1}$), and E(c, k+1; q) = P(c, k+1;q) - $\frac{{\phi}^k(q)}{2}$. The main purpose of this paper is using the properties of Gauss sums, primitive characters and the mean value theorems of Dirichlet L-functions to study the hybrid mean value of the r-th hyper-Kloosterman sums Kl(h,k+1,r;q) and E(c,k+1;q), and give an interesting mean value formula.