• Title/Summary/Keyword: normal and earth fault current

Search Result 4, Processing Time 0.017 seconds

Study on the Distribution of Electromagnetic Force for 154 kV Power Transmission Cable on Dual Underground Lines by Normal and Earth Fault Current (지중 2회선 154 kV 송전케이블의 정상 및 지락고장에 따른 전자기력 분포에 관한 연구)

  • Kim, Hui Min;Kim, So Young;Im, Sang Hyeon;Park, Gwan Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • The goal of this study is the size and distribution of the electromagnetic force generated by the current flowing through the second underground line of 154kV power transmission cables by using electromagnetic finite element analysis. So we interpret how mutually electromagnetic force has an effect on the comparable judgement of Trefoil, Duct and Flat, which shows in a numerical arrangement. 154kV OF 1200SQ Cable 1.281km not only is applicable to modeling for underground transmission cable but also examine the effect of line to line, phase to phase and size and direction of the electromagnetic force preparing for the occurrence of normal state and single-phase earth fault, which are arranged in trefoil, duct and flat formation between sections. As showing how the trajectory, and size distribution of the electromagnetic force translate as the arrangement of the cables when a steady-state current and a fault current flows on the underground cables, I hope that when Underground transmission is designed, this data will be useful information.

Restudy of Fault Current Distribution Ratio with Grounding Type of Normal Joint Box in Underground Transmission Systems (지중송전계통에서 보통접속함의 접지방식에 따른 고장전류분류율 재검토)

  • Hong, D.S.;Kang, J.W.;Jang, T.I.;Kim, H.H.;Yoon, H.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.500-502
    • /
    • 2002
  • Receltly, Underground transmission system is getting increased. Therefore the design of grounding system becomes very important to discharge overcurrent of lightning and fault through earth and reduce sheath induced voltage and sheath circulation current. This paper describes fault current distribution ratio for grounding line with grounding types of normal joint box and sheath grounding resistor at line-to-ground fault of cable.

  • PDF

BEF Detection Algorithm to Improve Reliability of Three-Wire-Unigrounded Distribution Line (3선-단접지배전선로의 신뢰도개선을 위한 BEF 검출 알고리즘)

  • Wan-Ki Min;Myeong-Ho Yoo;Seong-Hwa Kang
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.166-172
    • /
    • 1997
  • The BEF on the radial distribution line refers to a class of ground faults in which the load-side power line only is grounded, with the distribution line broken into two parts, the source-side and the load-side. Because its mechanism is remarkably different from that of other earth faults, the fault current is very low, and then difficult to detect the BEF. Thus, it is necessary to analyze its properties and to find an appropriate method that can economically protect the BEF of nonautomation area in the substation. As a result of analyzing the BEF data obtained by the RTDS, EMTP simulation, and the field test data of ETSA, we believe that it is the dominant factor in distinguishing the BEF from normal conditions by a criterion value that is appropriately handled from the zero-sequence current. Thus, with this criterion value, a BEF detecting algorithm is constructed which measures the variations of the zero-sequence current and processes then properly so as to make the fault decision. To prove the accuracy of this algorithm, it is compared with the field test data of ETSA under various conditions. The results show that the proposed algorithm is accurate.

  • PDF

High-resolution Seismic Imaging of Shallow Geology Offshore of the Korean Peninsula: Offshore Uljin (신기 지구조운동의 해석을 위한 한반도 근해 천부지질의 고해상 탄성파 탐사: 울진 주변해역)

  • Kim, Han-Joon;Jou, Hyeong-Tae;Yoo, Hai-Soo;Kim, Kwang-Hee;You, Lee-Sun
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.2
    • /
    • pp.127-132
    • /
    • 2011
  • We acquired and interpreted more than 650 km of high-resolution seismic reflection profiles in the Hupo Basin, offshore east coast of Korea at $37^{\circ}N$ in the East Sea (Japan Sea) to image shallow and basement deformation. The seismic profiles reveal that the main depocenter of the Hupo Basin in the study area is bounded by the large offset Hupo Fault on the east and an antithetic fault on the west; however, the antithetic fault is much smaller both in horizontal extension and in vertical displacement than the Hupo Fault. Sediment infill in the Hupo Basin consists of syn-rift (late Oligocene. early Miocene) and post-rift (middle Miocene.Holocene) units. The Hupo Fault and other faults newly defined in the Hupo Basin strike dominantly north and show a sense of normal displacement. Considering that the East Sea has been subjected to compression since the middle Miocene, we interpret that these normal faults were created during continental rifting in late Oligocene to early Miocene times. We suggest that the current ENE direction of maximum principal compressive stress observed in and around the Korean peninsula associated with the motion of the Amurian Plate induces the faults in the Hupo Basin to have reverse and right-lateral, strike-slip motion, when reactivated. A recent earthquake positioned on the Hupo Fault indicates that in the study area and possibly further in the eastern Korean margin, earthquakes would occur on the faults created during continental rifting in the Tertiary.