• 제목/요약/키워드: nonuniform nanobeam

검색결과 7건 처리시간 0.023초

Intelligent big data analysis and computational modelling for the stability response of the NEMS

  • Juncheng Fan;Qinyang Li;Sami Muhsen;H. Elhosiny Ali
    • Computers and Concrete
    • /
    • 제31권2호
    • /
    • pp.139-149
    • /
    • 2023
  • This article investigates the statically analysis regarding the thermal buckling behavior of a nonuniform small-scale nanobeam made of functionally graded material based on classic beam theories along with the nonlocal Eringen elasticity. The material distribution of functionally graded structures is composed of temperature-dependent ceramic and metal phases in axial and thickness directions, called two-dimensional functionally graded (2D-FG). The partial differential (PD) formulations and end conditions are extracted by using to the conservation energy method. The porosity voids are assumed in the nonuniform functionally graded (FG) structure. The thermal loads are in the axial direction of the beam. The extracted nonlocal PD equations are also solved by employing generalized differential quadrature method (GDQM). Last but not least, the information acquired is used to produce miniature sensors, providing a unique perspective on the growth of nanoelectromechanical systems (NEMS).

미분변환법을 이용한 다중 크랙을 갖는 비균일 나노빔의 진동해석 (Vibration Analysis of Multi Cracked Nonuniform Nanobeam by using Differential Transformation Method)

  • 신영재;박성현;김진홍;유영찬
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제20권5호
    • /
    • pp.93-101
    • /
    • 2016
  • 본 연구에서는 비국지 탄성이론과 미분변환법을 이용하여 탄성매질속 다중 크랙을 가진 비균질 나노빔의 지배방정식을 유도하고, 유도된 지배방정식과 경계조건에 미분변환법을 적용하여 나노빔의 축방향의 진동해석을 하며, 나노빔의 첫단과 끝단의 경계조건이 각각 고정단(Clamped end)과 자유단(Free end)의 경우에 대하여 수치해석을 수행하였다. 수치해석 결과를 기존 연구결과와 비교하여 타당성을 입증한 후, 비국지 작은 척도효과 (Nonlocal small scale effect), 탄성매질의 강성, 크랙의 위치, 크랙의 강성 그리고 비국지 탄성이론의 나노빔에 대한 진동해석 결과를 고찰하였다.

Intelligent computer modelling and simulation for the large amplitude of nano systems

  • Yi, Wenjuan
    • Advances in nano research
    • /
    • 제13권1호
    • /
    • pp.63-75
    • /
    • 2022
  • The nonlinear dynamic behavior of a nonuniform small-scale nonlocal beam is investigated in this work. The nanobeam is theoretically modeled using the nonlocal Eringen theory, as well as a few of Von-nonlinear Kármán's theories and the classical beam theory. The Hamilton principle extracts partial differential equations (PDE) of an axially functionally graded (AFG) nano-scale beam consisting of SUS304 and Si3N4 throughout its length, and an elastic Winkler-Pasternak substrate supports the tapered AFG nanobeam. The beam thickness is a function of beam length, and it constantly varies throughout the length of the beam. The numerical solution strategy employs an iteration methodology connected with the generalized differential quadratic method (GDQM) to calculate the nonlinear outcomes. The nonlinear numerical results are presented in detail to examine the impact of various parameters such as nonlinear amplitude, nonlocal parameter, the component of the elastic foundation, rate of cross-section change, and volume fraction parameter on the linear and nonlinear free vibration characteristics of AFG nanobeam.

Intelligent modeling to investigate the stability of a two-dimensional functionally graded porosity-dependent nanobeam

  • Zhou, Jinxuan;Moradi, Zohre;Safa, Maryam;Khadimallah, Mohamed Amine
    • Computers and Concrete
    • /
    • 제30권2호
    • /
    • pp.85-97
    • /
    • 2022
  • Using a combination of nonlocal Eringen as well as classical beam theories, this research explores the thermal buckling of a bidirectional functionally graded nanobeam. The formulations of the presented problem are acquired by means on conserved energy as well as nonlocal theory. The results are obtained via generalized differential quadrature method (GDQM). The mechanical properties of the generated material vary in both axial and lateral directions, two-dimensional functionally graded material (2D-FGM). In nanostructures, porosity gaps are seen as a flaw. Finally, the information gained is used to the creation of small-scale sensors, providing an outstanding overview of nanostructure production history.

Nonlinear bending of functionally graded porous nanobeam subjected to multiple physical load based on nonlocal strain gradient theory

  • Gao, Yang;Xiao, Wan-shen;Zhu, Haiping
    • Steel and Composite Structures
    • /
    • 제31권5호
    • /
    • pp.469-488
    • /
    • 2019
  • We in this paper study nonlinear bending of a functionally graded porous nanobeam subjected to multiple physical load based on the nonlocal strain gradient theory. For more reasonable analysis of nanobeams made of porous functionally graded magneto-thermo-electro-elastic materials (PFGMTEEMs), both constituent materials and the porosity appear gradient distribution in the present expression of effective material properties, which is much more suitable to the actual compared with the conventional expression of effective material properties. Besides the displacement function regarding physical neutral surface is introduced to analyze mechanical behaviors of beams made of FGMs. Then we derive nonlinear governing equations of PFGMTEEMs beams using the principle of Hamilton. To obtain analytical solutions, a two-step perturbation method is developed in nonuniform electric field and magnetic field, and then we use it to solve nonlinear equations. Finally, the analytical solutions are utilized to perform a parametric analysis, where the effect of various physical parameters on static bending deformation of nanobeams are studied in detail, such as the nonlocal parameter, strain gradient parameter, the ratio of nonlocal parameter to strain gradient parameter, porosity volume fraction, material volume fraction index, temperature, initial magnetic potentials and external electric potentials.

Stability characteristic of bi-directional FG nano cylindrical imperfect composite: Improving the performance of sports bikes using carbon nanotubes

  • Chaobing Yan;Tong Zhang;Ting Zheng;Tayebeh Mahmoudi
    • Steel and Composite Structures
    • /
    • 제50권4호
    • /
    • pp.459-474
    • /
    • 2024
  • Classical and first-order nonlocal beam theory are employed in this study to assess the thermal buckling performance of a small-scale conical, cylindrical beam. The beam is constructed from functionally graded (FG) porosity-dependent material and operates under the thermal conditions of the environment. Imperfections within the non-uniform beam vary along both the radius and length direction, with continuous changes in thickness throughout its length. The resulting structure is functionally graded in both radial and axial directions, forming a bi-directional configuration. Utilizing the energy method, governing equations are derived to analyze the thermal stability and buckling characteristics of a nanobeam across different beam theories. Subsequently, the extracted partial differential equations (PDE) are numerically solved using the generalized differential quadratic method (GDQM), providing a comprehensive exploration of the thermal behavior of the system. The detailed discussion of the produced results is based on various applied effective parameters, with a focus on the potential application of nanotubes in enhancing sports bikes performance.

Optimization of the cross-section regarding the stability of nanostructures according to the dynamic analysis

  • Qiuyang Cheng;H. Elhosiny Ali;Ibrahim Albaijan
    • Advances in concrete construction
    • /
    • 제15권4호
    • /
    • pp.215-228
    • /
    • 2023
  • The vibrational behavior of nanoelements is critical in determining how a nanostructure behaves. However, combining vibrational analysis with stability analysis allows for a more comprehensive knowledge of a structure's behavior. As a result, the goal of this research is to characterize the behavior of nonlocal nanocyndrical beams with uniform and nonuniform cross sections. The nonuniformity of the beams is determined by three distinct section functions, namely linear, convex, and exponential functions, with the length and mass of the beams being identical. For completely clamped, fully pinned, and cantilever boundary conditions, Eringen's nonlocal theory is combined with the Timoshenko beam model. The extended differential quadrature technique was used to solve the governing equations in this research. In contrast to the other boundary conditions, the findings of this research reveal that the nonlocal impact has the opposite effect on the frequency of the uniform cantilever nanobeam. Furthermore, since the mass of the materials employed in these nanobeams is designed to remain the same, the findings may be utilized to help improve the frequency and buckling stress of a resonator without requiring additional material, which is a cost-effective benefit.