• Title/Summary/Keyword: nonsplit domination number

Search Result 1, Processing Time 0.016 seconds

THE FORCING NONSPLIT DOMINATION NUMBER OF A GRAPH

  • John, J.;Raj, Malchijah
    • Korean Journal of Mathematics
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • A dominating set S of a graph G is said to be nonsplit dominating set if the subgraph ⟨V - S⟩ is connected. The minimum cardinality of a nonsplit dominating set is called the nonsplit domination number and is denoted by ��ns(G). For a minimum nonsplit dominating set S of G, a set T ⊆ S is called a forcing subset for S if S is the unique ��ns-set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing nonsplit domination number of S, denoted by f��ns(S), is the cardinality of a minimum forcing subset of S. The forcing nonsplit domination number of G, denoted by f��ns(G) is defined by f��ns(G) = min{f��ns(S)}, where the minimum is taken over all ��ns-sets S in G. The forcing nonsplit domination number of certain standard graphs are determined. It is shown that, for every pair of positive integers a and b with 0 ≤ a ≤ b and b ≥ 1, there exists a connected graph G such that f��ns(G) = a and ��ns(G) = b. It is shown that, for every integer a ≥ 0, there exists a connected graph G with f��(G) = f��ns(G) = a, where f��(G) is the forcing domination number of the graph. Also, it is shown that, for every pair a, b of integers with a ≥ 0 and b ≥ 0 there exists a connected graph G such that f��(G) = a and f��ns(G) = b.