• Title/Summary/Keyword: nonlocal effects

Search Result 284, Processing Time 0.025 seconds

Thermal buckling of FGM nanoplates subjected to linear and nonlinear varying loads on Pasternak foundation

  • Ebrahimi, Farzad;Ehyaei, Javad;Babaei, Ramin
    • Advances in materials Research
    • /
    • v.5 no.4
    • /
    • pp.245-261
    • /
    • 2016
  • Thermo-mechanical buckling problem of functionally graded (FG) nanoplates supported by Pasternak elastic foundation subjected to linearly/non-linearly varying loadings is analyzed via the nonlocal elasticity theory. Two opposite edges of the nanoplate are subjected to the linear and nonlinear varying normal stresses. Elastic properties of nanoplate change in spatial coordinate based on a power-law form. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanoplate. The equations of motion for an embedded FG nanoplate are derived by using Hamilton principle and Eringen's nonlocal elasticity theory. Navier's method is presented to explore the influences of elastic foundation parameters, various thermal environments, small scale parameter, material composition and the plate geometrical parameters on buckling characteristics of the FG nanoplate. According to the numerical results, it is revealed that the proposed modeling can provide accurate results of the FG nanoplates as compared some cases in the literature. Numerical examples show that the buckling characteristics of the FG nanoplate are related to the material composition, temperature distribution, elastic foundation parameters, nonlocality effects and the different loading conditions.

A high-order gradient model for wave propagation analysis of porous FG nanoplates

  • Shahsavari, Davood;Karami, Behrouz;Li, Li
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.53-66
    • /
    • 2018
  • A high-order nonlocal strain gradient model is developed for wave propagation analysis of porous FG nanoplates resting on a gradient hybrid foundation in thermal environment, for the first time. Material properties are assumed to be temperature-dependent and graded in the nanoplate thickness direction. To consider the thermal effects, uniform, linear, nonlinear, exponential, and sinusoidal temperature distributions are considered for temperature-dependent FG material properties. On the basis of the refined-higher order shear deformation plate theory (R-HSDT) in conjunction with the bi-Helmholtz nonlocal strain gradient theory (B-H NSGT), Hamilton's principle is used to derive the equations of wave motion. Then the dispersion relation between frequency and wave number is solved analytically. The influences of various parameters (such as temperature rise, volume fraction index, porosity volume fraction, lower and higher order nonlocal parameters, material characteristic parameter, foundations components, and wave number) on the wave propagation behaviors of porous FG nanoplates are investigated in detail.

A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium

  • Yazid, Miloud;Heireche, Houari;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Houari, Mohammed Sid Ahmed
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.15-25
    • /
    • 2018
  • This work presents the buckling investigation of embedded orthotropic nanoplates such as graphene by employing a new refined plate theory and nonlocal small-scale effects. The elastic foundation is modeled as two-parameter Pasternak foundation. The proposed two-variable refined plate theory takes account of transverse shear influences and parabolic variation of the transverse shear strains within the thickness of the plate by introducing undetermined integral terms, hence it is unnecessary to use shear correction factors. Nonlocal governing equations for the single layered graphene sheet are obtained from the principle of virtual displacements. The proposed theory is compared with other plate theories. Analytical solutions for buckling loads are obtained for single-layered graphene sheets with isotropic and orthotropic properties. The results presented in this study may provide useful guidance for design of orthotropic graphene based nanodevices that make use of the buckling properties of orthotropic nanoplates.

Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams

  • Berrabah, H.M.;Tounsi, Abdelouahed;Semmah, Abdelwahed;Adda Bedia, E.A.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.3
    • /
    • pp.351-365
    • /
    • 2013
  • In this paper, unified nonlocal shear deformation theory is proposed to study bending, buckling and free vibration of nanobeams. This theory is based on the assumption that the in-plane and transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. In addition, this present model is capable of capturing both small scale effect and transverse shear deformation effects of nanobeams, and does not require shear correction factors. The equations of motion are derived from Hamilton's principle. Analytical solutions for the deflection, buckling load, and natural frequency are presented for a simply supported nanobeam, and the obtained results are compared with those predicted by the nonlocal Timoshenko beam theory and Reddy beam theories.

Torsional vibration analysis of bi-directional FG nano-cone with arbitrary cross-section based on nonlocal strain gradient elasticity

  • Noroozi, Reza;Barati, Abbas;Kazemi, Amin;Norouzi, Saeed;Hadi, Amin
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.13-24
    • /
    • 2020
  • In this paper, for the first time based on the nonlocal strain gradient theory the effect of size dependency in torsional vibration of bi-direction functionally graded (FG) nonlinear nano-cone is study. The material properties were assumed to vary according to the arbitrary function in radial and axial directions. The Navier equation and boundary conditions of the size-dependent bidirectional FG nonlinear nano-cone were derived by Hamilton's principle. These equations were solved by employing the generalized differential quadrature method (GDQM). The presented model can turn into the classical model if the material length scale parameters are taken to be zero. The effects of some parameters, such as inhomogeneity constant, cross-sectional area parameter and small-scale parameters, were studied. As an essential result of this study can be stated that an FG nano-cone model based on the nonlocal elasticity theory behaves softer and based on the strain gradient theory behaves harder.

An exact solution for buckling analysis of embedded piezo-electro-magnetically actuated nanoscale beams

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.4 no.2
    • /
    • pp.65-84
    • /
    • 2016
  • This paper investigates the buckling behavior of shear deformable piezoelectric (FGP) nanoscale beams made of functionally graded (FG) materials embedded in Winkler-Pasternak elastic medium and subjected to an electro-magnetic field. Magneto-electro-elastic (MEE) properties of piezoelectric nanobeam are supposed to be graded continuously in the thickness direction based on power-law model. To consider the small size effects, Eringen's nonlocal elasticity theory is adopted. Employing Hamilton's principle, the nonlocal governing equations of the embedded piezoelectric nanobeams are obtained. A Navier-type analytical solution is applied to anticipate the accurate buckling response of the FGP nanobeams subjected to electro-magnetic fields. To demonstrate the influences of various parameters such as, magnetic potential, external electric voltage, power-law index, nonlocal parameter, elastic foundation and slenderness ratio on the critical buckling loads of the size-dependent MEE-FG nanobeams, several numerical results are provided. Due to the shortage of same results in the literature, it is expected that the results of the present study will be instrumental for design of size-dependent MEE-FG nanobeams.

On the static stability of nonlocal nanobeams using higher-order beam theories

  • Eltaher, M.A.;Khater, M.E.;Park, S.;Abdel-Rahman, E.;Yavuz, M.
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.51-64
    • /
    • 2016
  • This paper investigates the effects of thermal load and shear force on the buckling of nanobeams. Higher-order shear deformation beam theories are implemented and their predictions of the critical buckling load and post-buckled configurations are compared to those of Euler-Bernoulli and Timoshenko beam theories. The nonlocal Eringen elasticity model is adopted to account a size-dependence at the nano-scale. Analytical closed form solutions for critical buckling loads and post-buckling configurations are derived for proposed beam theories. This would be helpful for those who work in the mechanical analysis of nanobeams especially experimentalists working in the field. Results show that thermal load has a more significant impact on the buckling behavior of simply-supported beams (S-S) than it has on clamped-clamped (C-C) beams. However, the nonlocal effect has more impact on C-C beams that it does on S-S beams. Moreover, it was found that the predictions obtained from Timoshenko beam theory are identical to those obtained using all higher-order shear deformation theories, suggesting that Timoshenko beam theory is sufficient to analyze buckling in nanobeams.

Critical buckling of functionally graded nanoscale beam with porosities using nonlocal higher-order shear deformation

  • Benahmed, Abdelillah;Fahsi, Bouazza;Benzair, Abdelnour;Zidour, Mohamed;Bourada, Fouad;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.457-466
    • /
    • 2019
  • This paper presents an efficient higher-order nonlocal beam theory for the Critical buckling, of functionally graded (FG) nanobeams with porosities that may possibly occur inside the functionally graded materials (FG) during their fabrication, the nonlocal elastic behavior is described by the differential constitutive model of Eringen. The material properties of (FG) nanobeams with porosities are assumed to vary through the thickness according to a power law. The governing equations of the functionally graded nanobeams with porosities are derived by employing Hamilton's principle. Analytical solutions are presented for a simply supported FG nanobeam with porosities. The validity of this theory is studied by comparing some of the present results with other higher-order theories reported in the literature, Illustrative examples are given also to show the effects of porosity volume fraction, and thickness to length ratios on the critical buckling of the FG beams.

Computational and mathematical simulation for the size-dependent dynamic behavior of the high-order FG nanotubes, including the porosity under the thermal effects

  • Huang, Xiaoping;Shan, Huafeng;Chu, Weishen;Chen, Yongji
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.101-115
    • /
    • 2022
  • Some researchers pointed out that the nonlocal cantilever models do not predict the dynamic softening behavior for nanostructures (including nanobeams) with clamped-free (CF) ends. In contrast, some indicate that the nonlocal cantilever models can capture the stiffness softening characteristics. There are substantial differences on this issue between them. The vibration analysis of porosity-dependent functionally graded nanoscale tubes with variable boundary conditions is investigated in this study. Using a modified power-law model, the tube's porosity-dependent material coefficients are graded in the radial direction. The theory of nonlocal strain gradients is used. Hamilton's principle is used to derive the size-dependent governing equations for simply-supported (S), clamped (C) and clamped-simply supported (CS). Following the solution of these equations by the extended differential quadrature technique, the effect of various factors on vibration issues was investigated further. It can be shown that these factors have a considerable effect on the vibration characteristics. It also can be found that our numerical results can capture the unexpected softening phenomena for cantilever tubes.

Nonlocality effects of MgB2 superconductor

  • Jeong Hun Yang;Jong Su You;Soo Kyung Lee;Kyu Jeong Song
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.3
    • /
    • pp.22-27
    • /
    • 2023
  • Magnetic properties of MgB2 superconducting powder were investigated. M(H), the magnetic field H dependence of magnetization M, was measured and analyzed using a PPMS instrument. The MgB2 superconducting powder showed high critical current density Jc > ~ 107 A/cm2 and clean limit superconducting properties. The equilibrium magnetization Meq properties of MgB2 powders exhibiting various superconducting properties were studied. We find that the equilibrium magnetization Meq(H) properties of MgB2 powders showing conventional BCS properties deviate from the predictions of the standard local-London theory at temperatures below T = 19 K and are in good agreement with the generalized nonlocal-London theory. Nonlocal-London analysis was used to determine and analyze the nonlocal parameters. The temperature dependence of the London penetration depth values λ(T) was studied.