• Title/Summary/Keyword: nonlocal effects

Search Result 284, Processing Time 0.022 seconds

Modeling the size effect on vibration characteristics of functionally graded piezoelectric nanobeams based on Reddy's shear deformation beam theory

  • Ebrahimi, Farzad;Fardshad, Ramin Ebrahimi
    • Advances in nano research
    • /
    • v.6 no.2
    • /
    • pp.113-133
    • /
    • 2018
  • In this work, free vibration characteristics of functionally graded piezoelectric (FGP) nanobeams based on third order parabolic shear deformation beam theory are studied by presenting a Navier type solution as the first attempt. Electro-mechanical properties of FGP nanobeam are supposed to change continuously throughout the thickness based on power-law model. To capture the small size effects, Eringen's nonlocal elasticity theory is adopted. Using Hamilton's principle, the nonlocal governing equations for third order shear deformable piezoelectric FG nanobeams are obtained and they are solved applying analytical solution. By presenting some numerical results, it is demonstrated that the suggested model presents accurate frequency results of the FGP nanobeams. The influences of several parameters including, external electric voltage, power-law exponent, nonlocal parameter and mode number on the natural frequencies of the size-dependent FGP nanobeams is discussed in detail.

Dynamic response of size-dependent porous functionally graded beams under thermal and moving load using a numerical approach

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.;Hani, Fatima Masood
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.2
    • /
    • pp.69-84
    • /
    • 2020
  • Based on differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT), forced vibrations of a porous functionally graded (FG) scale-dependent beam in thermal environments have been investigated in this study. The nanobeam is assumed to be in contact with a moving point load. NSGT contains nonlocal stress field impacts together with the microstructure-dependent strains gradient impacts. The nano-size beam is constructed by functionally graded materials (FGMs) containing even and un-even pore dispersions within the material texture. The gradual material characteristics based upon pore effects have been characterized using refined power-law functions. Dynamical deflections of the nano-size beam have been calculated using DQM and Laplace transform technique. The prominence of temperature rise, nonlocal factor, strain gradient factor, travelling load speed, pore factor/distribution and elastic substrate on forced vibrational behaviors of nano-size beams have been explored.

Frequency, bending and buckling loads of nanobeams with different cross sections

  • Civalek, Omer;Uzun, Busra;Yayli, M. Ozgur
    • Advances in nano research
    • /
    • v.9 no.2
    • /
    • pp.91-104
    • /
    • 2020
  • The bending, stability (buckling) and vibration response of nano sized beams is presented in this study based on the Eringen's nonlocal elasticity theory in conjunction with the Euler-Bernoulli beam theory. For this purpose, the bending, buckling and vibration problem of Euler-Bernoulli nanobeams are developed and solved on the basis of nonlocal elasticity theory. The effects of various parameters such as nonlocal parameter e0a, length of beam L, mode number n, distributed load q and cross-section on the bending, buckling and vibration behaviors of carbon nanotubes idealized as Euler-Bernoulli nanobeam is investigated. The transverse deflections, maximum transverse deflections, vibrational frequency and buckling load values of carbon nanotubes are given in tables and graphs.

A numerical method for dynamic characteristics of nonlocal porous metal-ceramic plates under periodic dynamic loads

  • Abdulrazzaq, Mohammed Abdulraoof;Kadhim, Zeyad D.;Faleh, Nadhim M.;Moustafa, Nader M.
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.27-42
    • /
    • 2020
  • Dynamic stability of graded nonlocal nano-dimension plates on elastic substrate due to in-plane periodic loads has been researched via a novel 3- unknown plate theory based on exact position of neutral surface. Proposed theory confirms the shear deformation effects and contains lower field components in comparison to first order and refined 4- unknown plate theories. A modified power-law function has been utilized in order to express the porosity-dependent material coefficients. The equations of nanoplate have been represented in the context of Mathieu-Hill equations and Chebyshev-Ritz-Bolotin's approach has been performed to derive the stability boundaries. Detailed impacts of static/dynamic loading parameters, nonlocal constant, foundation parameters, material index and porosities on instability boundaries of graded nanoscale plates are researched.

Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept

  • Ahouel, Mama;Houari, Mohammed Sid Ahmed;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.963-981
    • /
    • 2016
  • A nonlocal trigonometric shear deformation beam theory based on neutral surface position is developed for bending, buckling, and vibration of functionally graded (FG) nanobeams using the nonlocal differential constitutive relations of Eringen. The present model is capable of capturing both small scale effect and transverse shear deformation effects of FG nanobeams, and does not require shear correction factors. The material properties of the FG nanobeam are assumed to vary in the thickness direction. The equations of motion are derived by employing Hamilton's principle, and the physical neutral surface concept. Analytical solutions are presented for a simply supported FG nanobeam, and the obtained results compare well with those predicted by the nonlocal Timoshenko beam theory.

Nonlinear and nonclassical vibration analysis of double walled piezoelectric cylindrical nanoshell

  • Kachapi, Sayyid H. Hashemi
    • Advances in nano research
    • /
    • v.9 no.4
    • /
    • pp.277-294
    • /
    • 2020
  • In current paper, nonlocal (NLT), nonlocal strain gradient (NSGT) and Gurtin-Murdoch surface/interface (GMSIT) theories with classical theory (CT) are utilized to investigate vibration and stability analysis of Double Walled Piezoelectric Nanosensor (DWPENS) based on cylindrical nanoshell. DWPENS simultaneously subjected to direct electrostatic voltage DC and harmonic excitations, structural damping, two piezoelectric layers and also nonlinear van der Waals force. For this purpose, Hamilton's principle, Galerkin technique, complex averaging and with arc-length continuation methods are used to analyze nonlinear behavior of DWPENS. For this work, three nonclassical theories compared with classical theory CT to investigate Dimensionless Natural Frequency (DNF), pull-in voltage, nonlinear frequency response and stability analysis of the DWPENS considering the nonlocal, material length scale, surface/interface (S/I) effects, electrostatic and harmonic excitation.

Thermomechanical interactions in a non local thermoelastic model with two temperature and memory dependent derivatives

  • Lata, Parveen;Singh, Sukhveer
    • Coupled systems mechanics
    • /
    • v.9 no.5
    • /
    • pp.397-410
    • /
    • 2020
  • The present investigation is concerned with two-dimensional deformation in a homogeneous isotropic non local thermoelastic solid with two temperatures due to thermomechanical sources. The theory of memory dependent derivatives has been used for the study. The bounding surface is subjected to concentrated and distributed sources (mechanical and thermal sources). The Laplace and Fourier transforms have been used for obtaining the solution to the problem in the transformed domain. The analytical expressions for displacement components, stress components and conductive temperature are obtained in the transformed domain. For obtaining the results in the physical domain, numerical inversion technique has been applied. Numerical simulated results have been depicted graphically for explaining the effects of nonlocal parameter on the components of displacements, stresses and conductive temperature. Some special cases have also been deduced from the present study. The results obtained in the investigation should be useful for new material designers, researchers and physicists working in the field of nonlocal material sciences.

Effect of Boundary Conditions on the Stability Characteristics of a Nanotube with Scale Effect (Scale Effect를 고려한 경계조건에 따른 나노튜브의 안정성 해석)

  • Choi, Jong-Woon;Yun, Kyung-Jae;Kim, Sung-Kyun;Park, Sang-Yun;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.923-928
    • /
    • 2012
  • In this paper, static and oscillatory instability of a nanotube conveying fluid and modelled as a thin-walled beam is investigated. Analytically nonlocal effect, effects of boundary conditions, transverse shear and rotary inertia are incorporated in this study. The governing equations and the two different boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extend Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Variations of critical flow velocity for different boundary conditions of a nanotube with analytically nonlocal effect, partially nonlocal effect and local effect of a nanotube are investigated and pertinent conclusion is outlined.

  • PDF

Size dependent effect on deflection and buckling analyses of porous nanocomposite plate based on nonlocal strain gradient theory

  • Khazaei, Pegah;Mohammadimehr, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.27-56
    • /
    • 2020
  • In this paper, the deflection and buckling analyses of porous nano-composite piezoelectric plate reinforced by carbon nanotube (CNT) are studied. The equations of equilibrium using energy method are derived from principle of minimum total potential energy. In the research, the non-local strain gradient theory is employed to consider size dependent effect for porous nanocomposite piezoelectric plate. The effects of material length scale parameter, Eringen's nonlocal parameter, porosity coefficient and aspect ratio on the deflection and critical buckling load are investigated. The results indicate that the effect of porosity coefficient on the increase of the deflection and critical buckling load is greatly higher than the other parameters effect, and size effect including nonlocal parameter and the material length scale parameter have a lower effect on the deflection increase with respect to the porosity coefficient, respectively and vice versa for critical buckling load. Porous nanocomposites are used in various engineering fields such as aerospace, medical industries and water refinery.

A unified formulation for static behavior of nonlocal curved beams

  • Tufekci, Ekrem;Aya, Serhan A.;Oldac, Olcay
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.475-502
    • /
    • 2016
  • Nanobeams are widely used as a structural element for nanodevices and nanomachines. The development of nano-sized machines depends on proper understanding of mechanical behavior of these nano-sized beam elements. Small length scales such as lattice spacing between atoms, surface properties, grain size etc. are need to be considered when applying any classical continuum model. In this study, Eringen's nonlocal elasticity theory is incorporated into classical beam model considering the effects of axial extension and the shear deformation to capture unique static behavior of the nanobeams under continuum mechanics theory. The governing differential equations are obtained for curved beams and solved exactly by using the initial value method. Circular uniform beam with concentrated loads are considered. The displacements, slopes and the stress resultants are obtained analytically. A detailed parametric study is conducted to examine the effect of the nonlocal parameter, mechanical loadings, opening angle, boundary conditions, and slenderness ratio on the static behavior of the nanobeam.