• Title/Summary/Keyword: nonlocal Eringen theory

Search Result 138, Processing Time 0.023 seconds

On buckling analysis of laminated composite plates using a nonlocal refined four-variable model

  • Shahsavari, Davood;Karami, Behrouz;Janghorban, Maziar
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.173-187
    • /
    • 2019
  • This study is concerned with the stability of laminated composite plates modelled using Eringen's nonlocal differential model (ENDM) and a novel refined-hyperbolic-shear-deformable plate theory. The plate is assumed to be lying on the Pasternak elastic foundation and is under the influence of an in-plane magnetic field. The governing equations and boundary conditions are obtained through Hamilton's principle. An analytical approach considering Navier series is used to fine the critical bucking load. After verifying with existing results for the reduced cases, the present model is then used to study buckling of the laminated composite plate. Numerical results demonstrate clearly for the first time the roles of size effects, magnetic field, foundation parameters, moduli ratio, geometry, lay-up numbers and sequences, fiber orientations, and boundary conditions. These results could be useful for designing better composites and can further serve as benchmarks for future studies on the laminated composite plates.

A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory

  • Zemri, Amine;Houari, Mohammed Sid Ahmed;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.693-710
    • /
    • 2015
  • This paper presents a nonlocal shear deformation beam theory for bending, buckling, and vibration of functionally graded (FG) nanobeams using the nonlocal differential constitutive relations of Eringen. The developed theory account for higher-order variation of transverse shear strain through the depth of the nanobeam, and satisfy the stress-free boundary conditions on the top and bottom surfaces of the nanobeam. A shear correction factor, therefore, is not required. In addition, this nonlocal nanobeam model incorporates the length scale parameter which can capture the small scale effect and it has strong similarities with Euler-Bernoulli beam model in some aspects such as equations of motion, boundary conditions, and stress resultant expressions. The material properties of the FG nanobeam are assumed to vary in the thickness direction. The equations of motion are derived from Hamilton's principle. Analytical solutions are presented for a simply supported FG nanobeam, and the obtained results compare well with those predicted by the nonlocal Timoshenko beam theory.

Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory

  • Besseghier, Abderrahmane;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.601-614
    • /
    • 2017
  • In this work, free vibration analysis of size-dependent functionally graded (FG) nanoplates resting on two-parameter elastic foundation is investigated based on a novel nonlocal refined trigonometric shear deformation theory for the first time. This theory includes undetermined integral variables and contains only four unknowns, with is even less than the conventional first shear deformation theory (FSDT). Mori-Tanaka model is employed to describe gradually distribution of material properties along the plate thickness. Size-dependency of nanosize FG plate is captured via the nonlocal elasticity theory of Eringen. By implementing Hamilton's principle the equations of motion are obtained for a refined four-variable shear deformation plate theory and then solved analytically. To show the accuracy of the present theory, our research results in specific cases are compared with available results in the literature and a good agreement will be demonstrated. Finally, the influence of various parameters such as nonlocal parameter, power law indexes, elastic foundation parameters, aspect ratio, and the thickness ratio on the non-dimensional frequency of rectangular FG nanoscale plates are presented and discussed in detail.

Nonlinear dynamic analysis of SWNTs conveying fluid using nonlocal continuum theory

  • Kordkheili, Seyed Ali Hosseini;Mousavi, Taha;Bahai, Hamid
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.621-629
    • /
    • 2018
  • By employing the nonlocal continuum field theory of Eringen and Von Karman nonlinear strains, this paper presents an analytical model for linear and nonlinear dynamics analysis of single-walled carbon nanotubes (SWNTs) conveying fluid with different boundary conditions. In the linear analysis the natural frequencies and critical flow velocities of SWNTs are computed. However, in the nonlinear analysis the effect of nonlocal parameter on nonlinear dynamics of cantilevered SWNTs conveying fluid is investigated by using bifurcation diagram, phase plane and Poincare map. Numerical results confirm existence of chaos as well as a period-doubling transition to chaos.

Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept

  • Ahouel, Mama;Houari, Mohammed Sid Ahmed;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.963-981
    • /
    • 2016
  • A nonlocal trigonometric shear deformation beam theory based on neutral surface position is developed for bending, buckling, and vibration of functionally graded (FG) nanobeams using the nonlocal differential constitutive relations of Eringen. The present model is capable of capturing both small scale effect and transverse shear deformation effects of FG nanobeams, and does not require shear correction factors. The material properties of the FG nanobeam are assumed to vary in the thickness direction. The equations of motion are derived by employing Hamilton's principle, and the physical neutral surface concept. Analytical solutions are presented for a simply supported FG nanobeam, and the obtained results compare well with those predicted by the nonlocal Timoshenko beam theory.

Size dependent effect on deflection and buckling analyses of porous nanocomposite plate based on nonlocal strain gradient theory

  • Khazaei, Pegah;Mohammadimehr, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.27-56
    • /
    • 2020
  • In this paper, the deflection and buckling analyses of porous nano-composite piezoelectric plate reinforced by carbon nanotube (CNT) are studied. The equations of equilibrium using energy method are derived from principle of minimum total potential energy. In the research, the non-local strain gradient theory is employed to consider size dependent effect for porous nanocomposite piezoelectric plate. The effects of material length scale parameter, Eringen's nonlocal parameter, porosity coefficient and aspect ratio on the deflection and critical buckling load are investigated. The results indicate that the effect of porosity coefficient on the increase of the deflection and critical buckling load is greatly higher than the other parameters effect, and size effect including nonlocal parameter and the material length scale parameter have a lower effect on the deflection increase with respect to the porosity coefficient, respectively and vice versa for critical buckling load. Porous nanocomposites are used in various engineering fields such as aerospace, medical industries and water refinery.

Free vibration analysis Silicon nanowires surrounded by elastic matrix by nonlocal finite element method

  • Uzun, Busra;Civalek, Omer
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.99-108
    • /
    • 2019
  • Higher-order theories are very important to investigate the mechanical properties and behaviors of nanoscale structures. In this study, a free vibration behavior of SiNW resting on elastic foundation is investigated via Eringen's nonlocal elasticity theory. Silicon Nanowire (SiNW) is modeled as simply supported both ends and clamped-free Euler-Bernoulli beam. Pasternak two-parameter elastic foundation model is used as foundation. Finite element formulation is obtained nonlocal Euler-Bernoulli beam theory. First, shape function of the Euler-Bernoulli beam is gained and then Galerkin weighted residual method is applied to the governing equations to obtain the stiffness and mass matrices including the foundation parameters and small scale parameter. Frequency values of SiNW is examined according to foundation and small scale parameters and the results are given by tables and graphs. The effects of small scale parameter, boundary conditions, foundation parameters on frequencies are investigated.

A nonlocal quasi-3D trigonometric plate model for free vibration behaviour of micro/nanoscale plates

  • Bessaim, Aicha;Houari, Mohammed Sid Ahmed;Bernard, Fabrice;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.223-240
    • /
    • 2015
  • In this work, a nonlocal quasi-3D trigonometric plate theory for micro/nanoscale plates is proposed. In order to introduce the size influences, the Eringen's nonlocal elasticity theory is utilized. In addition, the theory considers both shear deformation and thickness stretching effects by a trigonometric variation of all displacements within the thickness, and respects the stress-free boundary conditions on the top and bottom surfaces of the plate without considering the shear correction factor. The advantage of this theory is that, in addition to considering the small scale and thickness stretching effects (${\varepsilon}_z{\neq}0$), the displacement field is modelled with only 5 unknowns as the first order shear deformation theory (FSDT). Analytical solutions for vibration of simply supported micro/nanoscale plates are illustrated, and the computed results are compared with the available solutions in the literature and finite element model using ABAQUS software package. The influences of the nonlocal parameter, shear deformation and thickness stretching on the vibration behaviors of the micro/nanoscale plates are examined.

Dynamic response of nano-scale plates based on nonlocal elasticity theory (비국소 탄성 이론을 이용한 나노-스케일 판의 강제진동응답)

  • Kim, Jin-Kyu;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.436-444
    • /
    • 2013
  • This article presents the dynamic response of nano-scale plates using the nonlocal continuum theory and higher-order shear deformation theory. The nonlocal elasticity of Eringen has ability to capture the small scale effects and the higher-order shear deformation theory has ability to capture the quadratic variation of shear strain and consequently shear stress through the plate thickness. The solutions of transient dynamic analysis of nano-scale plate are presented using these theories to illustrate the effect of nonlocal theory on dynamic response of the nano-scale plates. The relations between nonlocal and local theories are discussed by numerical results. Also, the effects of nonlocal parameters, aspect ratio, side-to-thickness ratio, size of nano-scale plate and time step on dynamic response are investigated and discussed. The amplitude and cycle increase when nonlocal parameter increase. In order to validate the present solutions, the reference solutions are used and discussed. The theoretical development as well as numerical solutions presented herein should serve as reference for nonlocal theories as applied to the transient dynamic analysis of nano-scale structures.

Nonlocal buckling characteristics of heterogeneous plates subjected to various loadings

  • Ebrahimi, Farzad;Babaei, Ramin;Shaghaghi, Gholam Reza
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.5
    • /
    • pp.515-531
    • /
    • 2018
  • In this manuscript, buckling response of the functionally graded material (FGM) nanoplate is investigated. Two opposite edges of nanoplate is under linear and nonlinear varying normal stresses. The small-scale effect is considered by Eringen's nonlocal theory. Governing equation are derived by nonlocal theory and Hamilton's principle. Navier's method is used to solve governing equation in simply boundary conditions. The obtained results exactly match the available results in the literature. The results of this research show the important role of nonlocal effect in buckling and stability behavior of nanoplates. In order to study the FG-index effect and different loading condition effects on buckling of rectangular nanoplate, Navier's method is applied and results are presented in various figures and tables.