• Title/Summary/Keyword: nonlinear systems control

검색결과 2,435건 처리시간 0.024초

비선형 시스템제어를 위한 복합적응 신경회로망 (Composite adaptive neural network controller for nonlinear systems)

  • 김효규;오세영;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.14-19
    • /
    • 1993
  • In this paper, we proposed an indirect learning and direct adaptive control schemes using neural networks, i.e., composite adaptive neural control, for a class of continuous nonlinear systems. With the indirect learning method, the neural network learns the nonlinear basis of the system inverse dynamics by a modified backpropagation learning rule. The basis spans the local vector space of inverse dynamics with the direct adaptation method when the indirect learning result is within a prescribed error tolerance, as such this method is closely related to the adaptive control methods. Also hash addressing technique, similar to the CMAC functional architecture, is introduced for partitioning network hidden nodes according to the system states, so global neuro control properties can be organized by the local ones. For uniform stability, the sliding mode control is introduced when the neural network has not sufficiently learned the system dynamics. With proper assumptions on the controlled system, global stability and tracking error convergence proof can be given. The performance of the proposed control scheme is demonstrated with the simulation results of a nonlinear system.

  • PDF

비선형성이 존재하는 동적 시스템의 식별과 제어 (Identification and control of dynamical system including nonlinearities)

  • 김규남;조규상;양태진;김경기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.236-242
    • /
    • 1992
  • Multi-layered neural networks are applied to the identification and control of nonlinear dynamical system. Traditional adaptive control techniques can only deal with linear systems or some special nonlinear systems. A scheme for combining multi-layered neural networks with model reference network techniques has the capability to learn the nonlinearity and shows the great potential for adaptive control. In many interesting cases the system can be described by a nonlinear model in which the control input appears linearly. In this paper the identification of linear and nonlinear part are performed simultaneously. The projection algorithm and the new estimation method which uses the delta rule of neural network are compared throughout the simulation. The simulation results show that the identification and adaptive control schemes suggested are practically feasible and effective.

  • PDF

블럭펄스 함수를 이용한 비선형 시스템의 최적제어 (Optimal Control of Nonlinear Systems Using Block Pulse Functions)

  • 조영호;안두수
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권3호
    • /
    • pp.111-116
    • /
    • 2000
  • In this paper, we presented a new algebraic iterative algorithm for the optimal control of the nonlinear systems. The algorithm is based on tow steps. The first step transforms optimal control problem into a sequence of linear optimal control problem using the quasilinearization method. In the second step, TPB(two point boundary condition problem) is solved by algebraic equations instead of differential equations using BPF(block pulse functions). The proposed algorithm is simple and efficient in computation for the optimal control of nonlinear systems. In computer simulation, the algorithm was verified through the optimal control design of Van del pole system and Volterra Predatory-prey system.

  • PDF

Sliding Mode Control for Attitude Tracking of Thruster-Controlled Spacecraft

  • Cheon, Yee-Jin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권4호
    • /
    • pp.257-261
    • /
    • 2001
  • Nonlinear pulse width modulation (PWM) controlled system is considered to achieve control performance of thruster controlled spacecraft. The actual PWM controlled motions occur, very closely, around the average model trajectory. Furthermore nonlinear PWM controller design can be directly applied to thruster controlled spacecraft to determine thruster on-time. Sliding mode control for attitude tracking of three-axis thruster-controlled spacecraft is presented. Simulation results are shown which use modified Rodrigues parameters and sliding mode control law to achieve attitude tracking of a three-axis spacecraft with thrusters.

  • PDF

Constructing Nonlinear Sliding Surface for Spacecraft Attitude Control Problems

  • Cheon, Yee-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.41-44
    • /
    • 1999
  • Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters(MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.

  • PDF

리아프노브 안정성이 보장되는 신경회로망을 이용한 비선형 시스템 제어 (Nonlinear system control using neural network guaranteed Lyapunov stability)

  • 성홍석;이쾌희
    • 제어로봇시스템학회논문지
    • /
    • 제2권3호
    • /
    • pp.142-147
    • /
    • 1996
  • In this paper, we describe the algorithm which controls an unknown nonlinear system with multilayer neural network. The multilayer neural network can be used to approximate any continuous function to any desired degree of accuracy. With the former fact, we approximate unknown nonlinear function on the nonlinear system by using of multilayer neural network. The weight-update rule of multilayer neural network is derived to satisfy Lyapunov stability. The whole control system constitutes controller using feedback linearization method. The weight of neural network which is used to implement nonlinear function is updated by the derived update-rule. The proposed control algorithm is verified through computer simulation.

  • PDF

Lipschitz 비선형 시스템의 강인 저차 상태 관측기 (Robust Reduced Order State Observer for Lipschitz Nonlinear Systems)

  • 이성렬
    • 제어로봇시스템학회논문지
    • /
    • 제14권8호
    • /
    • pp.837-841
    • /
    • 2008
  • This paper presents a robust reduced order state observer for a class of Lipschitz nonlinear systems with external disturbance. Sufficient conditions on the existence of the proposed observer are characterized by linear matrix inequalities. It is also shown that the proposed observer design can reduce the effect on the estimation error of external disturbance up to the prescribed level. Finally, a numerical example is provided to verify the proposed design method.

An Observer Design for MIMO Nonlinear Systems

  • Lee, Sungryul;Yanghee Yee;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권3호
    • /
    • pp.189-194
    • /
    • 2002
  • This paper presents a state observer design for a class of MTMO nonlinear systems that has a block triangular structure. For this, the extension of the existing design for SISO triangular systems to MIMO cases is provided. Since the gain of the proposed observer. depends on a nonlinear part as well as a linear one of a system, it improves the transient performance of the high gain ob-server. Also, by using a generalized similarity transformation for the error dynamics, it is shown that order some boundedness condi-tion, the proposed observer guarantees the global exponential convergence of the estimation error. Finally, we will give a simulation example to show the validity of our design methodology.

능동 소음 제어 시스템의 2차 경로 비선형 특성을 보상하기 위한 적응 비선형 Filtered-X Least Mean Square (FX-LMS) 알고리듬 (A Nonlinear Filtered-X LMS Algorithm for the Nonlinear Compensation of the Secondary Path in Active Noise Control)

  • 정인석;김덕호;남상원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.565-567
    • /
    • 2004
  • In active noise control (ANC) systems, the convergence behavior of the conventional Filtered-X Least Mean Square (FXLMS) algorithm may be affected by nonlinear distortions in the secondary path (e.g., in the power amplifiers, loudspeakers, transducers, etc.), which may lead to degradation of the error-reduction performance of the ANC systems. In this paper, a stable FXLMS algorithm with fast convergence is proposed to compensate for undesirable nonlinear distortions in the secondary-path of ANC systems by employing the Volterra filtering approach. In particular, the proposed approach is based on the utilization of the conventional P-th order inverse approach to nonlinearity compensation in the secondary path of ANC systems. Finally, the simulation results showed that the proposed approach yields a better convergence behavior In the nonlinear ANC systems than the conventional FXLMS.

  • PDF

불확실성을 갖는 비선형 시스템의 적응 제어기 설계 (Design of Adaptive Regulator for a Nonlinear Uncertain System)

  • 진주화;유경탁;손영익;서진헌
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권2호
    • /
    • pp.153-158
    • /
    • 1999
  • We consider single-input nonlinear systems with unknown unmodelled time-varying parameters or disturbances which are bounded. The main goal is to identify classes of uncertain systems for which the control exist and to provide constructive design procedures. Assuming that the undisturbed nominal system ( ,g) is partially state feedback linearizable, that a strict triangularity condition, a linear parametrization condition, and {{{{ { G}_{r-1 } }}}} hold for the uncertain terms, and that some condition is satisfied in the transformed partially linear system, we design an adaptive regulating dynamic control. At first, we identify classes of nonlinear uncertain systems and give a systematic procedure for the design of a robust regulation for the nonlinear systems.

  • PDF