• 제목/요약/키워드: nonlinear system modeling

검색결과 715건 처리시간 0.024초

비선형 특성을 시스템 입력으로 처리하는 추적 필터 (Tracking Filter Dealing with Nonlinear Inherence as a System Input)

  • 신상진
    • 한국전자파학회논문지
    • /
    • 제25권7호
    • /
    • pp.774-781
    • /
    • 2014
  • 레이더에서 측정값은 직교 좌표계가 아니라 극 좌표계에서 얻어진다. 표적 동력학을 직교 좌표계에서 모델링하면 극 좌표계에서 획득된 측정값을 직교 좌표계로 변환한 의사 측정치를 사용하거나 확장형 칼만 필터를 사용하여 표적 추적 필터를 구현한다. 만일 표적 동력학을 극 좌표계에서 모델링하면 측정 방정식은 선형이나 동력학 방정식이 비선형이 된다. 본 논문에서는 극 좌표계에서 동력학 방정식을 모델링하고, 시스템 행렬을 시불변 형태로 모델링하여 발생한 비선형 성분을 시스템 입력으로 처리한 추적 필터를 제안한다. 이러한 추적 필터는 거리 측정값과 동시에 도플러 측정값이 가용할 경우, 측정방정식의 선형성을 그대로 유지하게 되므로 추적 필터의 알고리듬에 변동이 없고 추가된 도플러 정보를 사용하여 추적 성능을 높일 수 있다. 또한, 기존에 일반적으로 사용되고 있는 추적 필터와 제안한 모델링을 사용한 추적 필터의 추적 성능을 시뮬레이션을 통하여 검증한다.

T-S 퍼지 모델을 이용한 비선형 시스템의 퍼지 슬라이딩 모드 제어 (Fuzzy Sliding Mode Control of Nonlinear System Based on T-S Fuzzy Dynamic Model)

  • 유병국;양근호
    • 한국지능시스템학회논문지
    • /
    • 제14권1호
    • /
    • pp.112-117
    • /
    • 2004
  • 본 논문에서는 Takagi-Sugeno(T-S) 퍼지 시스템 모델을 이용한 비선형 시스템의 퍼지 슬라이딩 모드제어방식을 제안한다. 이 방식에서는 하나의 T-S 퍼지 모델을 구성하는 각 선형 동력학의 입력 이득행렬을 단일화 하는 과정을 필요로 한다. 이 과정에서 생성되는 입력 불확실성은 슬라이딩 모드 제어의 외란에 대한 처리 방법으로 해결될 수 있다. 또한 기존의 T-S 퍼지 모델에 대한 제어방식에서 처리하지 못했던, 상태변수에 독립적이기 때문에 선형화되지 않는 비선형 항에 대한 문제를 해결할 수 있다. 제안된 제어시스템의 안정도를 보이며 제어 입력이 슬라이딩 평면에 대한 도달조건을 만족함을 보인다. 제안된 제어방식의 타당성과 제어기 설계과정을 보이기 위하여 역진자 시스템에 적용한 시뮬레이션 결과를 보인다.

A novel smart criterion of grey-prediction control for practical applications

  • Z.Y. Chen;Ruei-yuan Wang;Yahui Meng;Timothy Chen
    • Smart Structures and Systems
    • /
    • 제31권1호
    • /
    • pp.69-78
    • /
    • 2023
  • The purpose of this paper is to develop a scalable grey predictive controller with unavoidable random delays. Grey prediction is proposed to solve problems caused by incorrect parameter selection and to eliminate the effects of dynamic coupling between degrees of freedom (DOFs) in nonlinear systems. To address the stability problem, this study develops an improved gray-predictive adaptive fuzzy controller, which can not only solve the implementation problem by determining the stability of the system, but also apply the Linear Matrix Inequality (LMI) law to calculate Fuzzy change parameters. Fuzzy logic controllers manipulate robotic systems to improve their control performance. The stability is proved using Lyapunov stability theorem. In this article, the authors compare different controllers and the proposed predictive controller can significantly reduce the vibration of offshore platforms while keeping the required control force within an ideal small range. This paper presents a robust fuzzy control design that uses a model-based approach to overcome the effects of modeling errors. To guarantee the asymptotic stability of large nonlinear systems with multiple lags, the stability criterion is derived from the direct Lyapunov method. Based on this criterion and a distributed control system, a set of model-based fuzzy controllers is synthesized to stabilize large-scale nonlinear systems with multiple delays.

Modeling of composite MRFs with CFT columns and WF beams

  • Herrera, Ricardo A.;Muhummud, Teerawut;Ricles, James M.;Sause, Richard
    • Steel and Composite Structures
    • /
    • 제43권3호
    • /
    • pp.327-340
    • /
    • 2022
  • A vast amount of experimental and analytical research has been conducted related to the seismic behavior and performance of concrete filled steel tubular (CFT) columns. This research has resulted in a wealth of information on the component behavior. However, analytical and experimental data for structural systems with CFT columns is limited, and the well-known behavior of steel or concrete structures is assumed valid for designing these systems. This paper presents the development of an analytical model for nonlinear analysis of composite moment resisting frame (CFT-MRF) systems with CFT columns and steel wide-flange (WF) beams under seismic loading. The model integrates component models for steel WF beams, CFT columns, connections between CFT columns and WF beams, and CFT panel zones. These component models account for nonlinear behavior due to steel yielding and local buckling in the beams and columns, concrete cracking and crushing in the columns, and yielding of panel zones and connections. Component tests were used to validate the component models. The model for a CFT-MRF considers second order geometric effects from the gravity load bearing system using a lean-on column. The experimental results from the testing of a four-story CFT-MRF test structure are used as a benchmark to validate the modeling procedure. An analytical model of the test structure was created using the modeling procedure and imposed-displacement analyses were used to reproduce the tests with the analytical model of the test structure. Good agreement was found at the global and local level. The model reproduced reasonably well the story shear-story drift response as well as the column, beam and connection moment-rotation response, but overpredicted the inelastic deformation of the panel zone.

AN ASYMPTOTIC TRACKING CONTROL STRATEGY FOR MECHANICAL SYSTEMS WITH UNCERTAIN NONLINEAR FRICTION

  • Yang, Hyun-Suk;Hong, Bum-Il;Yang, Mee-Hyea
    • 호남수학학술지
    • /
    • 제30권2호
    • /
    • pp.369-378
    • /
    • 2008
  • Modeling nonlinear friction effects is a challenging problem. In this paper, a tracking controller is proposed for a system with uncertain nonlinear friction dynamics. Instead of using a specific friction model, we assume that the friction dynamics are represented by a function, which is unknown except its being continuously differentiable and Lipschitz continuous with known Lipschitz constants. It is shown that the scheme results in friction identification and trajectory position and velocity tracking. The analysis is done using Lyapunov-based stability method.

신경회로망 및 Backstepping 기법을 이용한 비선형 적응 비행제어 (Nonlinear Adaptive Flight Control Using Neural Networks and Backstepping)

  • 이태영;김유단
    • 제어로봇시스템학회논문지
    • /
    • 제6권12호
    • /
    • pp.1070-1078
    • /
    • 2000
  • A nonlinear adaptive flight control system is proposed using a backstepping controller with neural network controller. The backstepping controller is used to stabilize all state variables simultaneously without the two-timescale assumption that separates the fast dynamics, involving the angular rates of the aircraft, from the slow dynamics which includes angle of attack, sideslip angle, and bank angle. It is assumed that the aerodynamic coefficients include uncertainty, and an adaptive controller based on neural networks is used to compensate for the effect of the aerodynamic modeling error. It is shown by the Lyapunov stability theorem that the tracking errors and the weights of neural networks exponentially converge to a compact set. Finally, nonlinear six-degree-of-freedom simulation results for an F-16 aircraft model are presented to demonstrate the effectiveness of the proposed control law.

  • PDF

Inelastic transient analysis of piles in nonhomogeneous soil

  • Kucukarslan, S.;Banerjee, P.K.
    • Structural Engineering and Mechanics
    • /
    • 제26권5호
    • /
    • pp.545-556
    • /
    • 2007
  • In this paper, a hybrid boundary element technique is implemented to analyze nonlinear transient pile soil interaction in Gibson type nonhomeogenous soil. Inelastic modeling of soil media is presented by introducing a rational approximation to the continuum with nonlinear interface springs along the piles. Modified $\ddot{O}$zdemir's nonlinear model is implemented and systems of equations are coupled at interfaces for piles and pile groups. Linear beam column finite elements are used to model the piles and the resulting governing equations are solved using an implicit integration scheme. By enforcing displacement equilibrium conditions at each time step, a system of equations is generated which yields the solution. A numerical example is performed to investigate the effects of nonlinearity on the pile soil interaction.

Adaptive balancing of highly flexible rotors by using artificial neural networks

  • Saldarriaga, M. Villafane;Mahfoud, J.;Steffen, V. Jr.;Der Hagopian, J.
    • Smart Structures and Systems
    • /
    • 제5권5호
    • /
    • pp.507-515
    • /
    • 2009
  • The present work is an alternative methodology in order to balance a nonlinear highly flexible rotor by using neural networks. This procedure was developed aiming at improving the performance of classical balancing methods, which are developed in the context of linearity between acting forces and resulting displacements and are not well adapted to these situations. In this paper a fully experimental procedure using neural networks is implemented for dealing with the adaptive balancing of nonlinear rotors. The nonlinearity results from the large displacements measured due to the high flexibility of the foundation. A neural network based meta-model was developed to represent the system. The initialization of the learning procedure of the network is performed by using the influence coefficient method and the adaptive balancing strategy is prone to converge rapidly to a satisfactory solution. The methodology is tested successfully experimentally.

비선형 불확실성에 대한 서보계의 강인성에 관한 고찰(II) - 강인 안정성 조건 (A Study on Robustness of a Two-Degree-of-Freedom Servosystem with Nonlinear Type Uncertainty(II) - Rubust Stability Condition)

  • 김영복
    • 한국해양공학회지
    • /
    • 제13권3B호
    • /
    • pp.99-105
    • /
    • 1999
  • In order to reject the steady-state tracking error, it is common to introduce integral compensators in servosystems for constant reference signals. However, if the mathematical model of the plant is exact and no disturbance input exists, the integral compensation is not necessary. From this point of view, a two-degree-of-freedom(2DOF) servosystem has been proposed, in which the integral compensation is effective only when there is a modeling error or a disturbance input. The present paper considers a robust stability of this 2DOF servosystem with nonlinear type uncertainty in the system, and a robust stability condition for the servosystem is introduced. This result guarantees that if the plant uncertainty is in the permissible set defined by the condition, gain tuning can be carried out to suppress the influence of the plant uncertainties and disturbance inputs.

  • PDF

Fuzzy control for geometrically nonlinear vibration of piezoelectric flexible plates

  • Xu, Yalan;Chen, Jianjun
    • Structural Engineering and Mechanics
    • /
    • 제43권2호
    • /
    • pp.163-177
    • /
    • 2012
  • This paper presents a LMI(linear matrix inequality)-based fuzzy approach of modeling and active vibration control of geometrically nonlinear flexible plates with piezoelectric materials as actuators and sensors. The large-amplitude vibration characteristics and dynamic partial differential equation of a piezoelectric flexible rectangular thin plate structure are obtained by using generalized Fourier series and numerical integral. Takagi-Sugeno (T-S) fuzzy model is employed to approximate the nonlinear structural system, which combines the fuzzy inference rule with the local linear state space model. A robust fuzzy dynamic output feedback control law based on the T-S fuzzy model is designed by the parallel distributed compensation (PDC) technique, and stability analysis and disturbance rejection problems are guaranteed by LMI method. The simulation result shows that the fuzzy dynamic output feedback controller based on a two-rule T-S fuzzy model performs well, and the vibration of plate structure with geometrical nonlinearity is suppressed, which is less complex in computation and can be practically implemented.