• Title/Summary/Keyword: nonlinear structures

Search Result 2,783, Processing Time 0.027 seconds

Nonlinear resonance of axially moving GPLRMF plates with different boundary conditions

  • Jin-Peng Song;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.361-371
    • /
    • 2023
  • Boundary condition is an important factor affecting the vibration characteristics of structures, under different boundary conditions, structures will exhibit different vibration behaviors. On the basis of the previous work, this paper extends to the nonlinear resonance behavior of axially moving graphene platelets reinforced metal foams (GPLRMF) plates with geometric imperfection under different boundary conditions. Based on nonlinear Kirchhoff plate theory, the motion equations are derived. Considering three boundary conditions, including four edges simply supported (SSSS), four edges clamped (CCCC), clamped-clamped-simply-simply (CCSS), the nonlinear ordinary differential equation system is obtained by Galerkin method, and then the equation system is solved to obtain the nonlinear ordinary differential control equation which only including transverse displacement. Subsequently, the resonance response of GPLRMF plates is obtained by perturbation method. Finally, the effects of different boundary conditions, material properties (including the GPLs patterns, foams distribution, porosity coefficient and GPLs weight fraction), geometric imperfection, and axial velocity on the resonance of GPLRMF plates are investigated.

Nonlinear low-velocity impact response of graphene platelets reinforced metal foams doubly curved shells

  • Hao-Xuan Ding;Yi-Wen Zhang;Yin-Ping Li;Gui-Lin She
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.281-291
    • /
    • 2023
  • Due to the fact that the nonlinear low-velocity impact response of graphene platelets reinforced metal foams (GPLRMF) doubly curved shells have not been investigated in the existing works, this paper aims to solve this issue. Using Reddy's high-order shear deformation theory (HSDT), the nonlinear governing equations of GPLRMF doubly curved shells are obtained by Euler-Lagrange method, discretized by Galerkin principle, and solved by the fourth-order Runge-Kutta method to obtain the impact force and central deflection. The nonlinear Hertz contact law is applied to determine the contact force. Finally, the impacts of graphene platelets (GPLs) distribution pattern, porosity distribution form, porosity coefficient, damping coefficient, impact parameters (radius and initial velocity), GPLs weight fraction, pre-stressing force and different shell types on the low-velocity impact curves are analyzed. It can be found that, among the four shell structures, the impact resistance of spherical shell is the best, while that of cylindrical shell is the worst.

A study on the Accurate Comparison of Nonlinear Solution Which Used Tangent Stiffness Equation and Nonlinear Stiffness Equation (접선 강성방정식과 비선형 강성방정식을 이용한 비선형 해의 정확성 비교에 관한 연구)

  • Kim, Seung-Deog;Kim, Nam-Seok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.95-103
    • /
    • 2010
  • This paper study on the accuracy improvement of nonlinear stiffness equation. The large structure must have thin thickness for build the large space structure there fore structure instability review is important when we do structural design. The structure instability of the shelled structure is accept it sensitively by varied conditions. This come to a nonlinear problem with be concomitant large deformation. Accuracy of nonlinear stiffness equation must improve to examine structure instability. In this study, space truss is analysis model Among tangent stiffness equation and nonlinear stiffness equation is using nonlinearity analysis program. The study compares an analysis result to investigate accuracy and convergence properties improvement of nonlinear stiffness equation.

  • PDF

Evaluation of Nonlinear Seismic Performance Using Equivalent Responses of Multistory Building Structures (대표응답을 이용한 건축구조물의 비선형 지진응답 분석 및 내진성능평가)

  • 이동근;최원호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.65-76
    • /
    • 2001
  • Determination of ductility demand and prediction of nonlinear seismic responses of a structure under the earthquake ground motions have become a very important subject for evaluation of seismic performance in the performance based seismic design. In this study, the system ductility demand and nonlinear seismic responses of the steel moment framed structures by the nonlinear time history analysis are estimated and compared with those obtained from the capacity spectrum method suggested in ATC-40 and proposed method that is an improvement on the capacity spectrum method using the equivalent responses derived directly from a multi degree of freedom system. the adequacy and validity of the proposed method is verified by comparing the results evaluated by the method proposed in this study and the results obtained from method suggested in ATC-40 to the nonlinear seismic responses of the example structures from the nonlinear time history analysis.

  • PDF

Seismic Performance Evaluation of Building Structures Using Modified Capacity Spectrum (수정된 능력스펙트럼을 이용한 건축구조물의 내진성능평가)

  • 최원호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.267-274
    • /
    • 2000
  • Current seismic design codes for building structures are based on the method which can provide enough capacity to satisfy objected performance level and exactly evaluate the seismic performance of buildings. The capacity spectrum method using the nonlinear static(pushover) analysis is becoming a popular tool for evaluating the seismic performance of existing and new building structures. By means of a graphical procedure capacity spectrum method esimates the performance level of structure by comparing the capacity of structure with the demand of earthquake ground motion on the structure. In the method the relation between base shear estimated by a nonlinear static analysis and horizontal displacement is used. Capacity spectrum is usually expressed as what represent the responses of the equivalent single degree of freedom (ESDOF) system for the building structures. However there are some problems in converting procedures into ESDOF system which include not considering the effect of higher modes of structures. The objective of this paper is to compare and verify existing methods and suggest the modified capacity spectrum for seismic performance evaluation of building structures.

  • PDF

A Comparative Analysis of Dynamic Instability Characteristic of Geiger-Typed Cable Dome Structures by Load Condition (Geiger형 케이블 돔 구조물의 외력에 따른 동적 불안정 특성 비교분석)

  • Kim, Seung-Deog;Sin, In-A
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.1
    • /
    • pp.85-91
    • /
    • 2014
  • The purpose of this paper is to study comparative of dynamic instability characteristic of Geiger-typed cable dome structures by load condition, which is well-known among the cable dome structures that are the lightweight hybrid structure using compression and tension element continuously. Dynamic buckling process in the phase plane is very important thing for understanding why unstable phenomena are sensitively originated in nonlinear dynamic by various initial conditions. But there is no paper for the dynamic instability of hybrid cable dome by Sinusoidal Excitations, many papers which deal with the dynamic instability for shell-structures under the step load have been published. As a result of Geiger-typed cable dome, which shows chaotic behavior in dynamic nonlinear analysis with initial imperfection.

Verification of diaphragm seismic design factors for precast concrete parking structures

  • Zhang, Dichuan;Fleischman, Robert
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.643-656
    • /
    • 2019
  • A new seismic design methodology was proposed for precast concrete diaphragms. This methodology adopts seismic design factors applied on top of current diaphragm design forces. These factors are aimed to produce diaphragm design strengths aligned with different seismic performance targets. These factors were established through extensive parametric studies. These studies used a simple evaluation structure with a single-bay rectangular diaphragm. The simple evaluation structure is suitable for establishment of the design factors over comprehensive structural geometry and design parameters. However, the application of the design factors to prototype structures with realistic layouts requires further verification and investigation. This paper presents diaphragm design of several precast concrete parking structures using the new design methodology and verification of the design factor through nonlinear dynamic time history analyses. The seismic behavior and performance of the diaphragm were investigated for the precast concrete parking structures. It was found that the design factor established for the new design methodology is applicable to the realistic precast concrete parking structures.

Seismic performance evaluation of steel moment frames with self-centering energy-dissipating coupled wall panels

  • Lu Sui;Hanheng Wu;Menglong Tao;Zhichao Jia;Tianhua Zhou
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.663-677
    • /
    • 2023
  • The self-centering energy-dissipating coupled wall panels (SECWs) possess a dual capacity of resiliency and energy dissipation. Used in steel frames, the SECWs can localize the damage of structures and reduce residual drifts. Based on OpenSEES, the nonlinear models were established and validated by experimental results. The seismic design procedure of steel frame with SECW structures (SF-SECW) was proposed in accordance with four-level seismic fortification objectives. Nonlinear time-history response analyses were carried out to validate the reasonability of seismic design procedure for 6-story and 12-story structures. Results show that the inter-story drifts of designed structures are less than drift limits. According to incremental dynamic analyses (IDA), the fragility curves of mentioned-above structure models under different limit states were obtained. The results indicate that designed structures have good seismic performance and meet the seismic fortification objectives.

A Shape Finding of the Cable Structures by Flexibility Iteration Procedure and Nonlinear FEM (유연성 반복과정과 비선형유한요소법에 의한 케이블 구조물의 형태탐색)

  • 황보석;서삼열;진권태
    • Computational Structural Engineering
    • /
    • v.3 no.3
    • /
    • pp.133-140
    • /
    • 1990
  • Analysis of cable structures is complex because their force - displacement relationships are highly nonlinear and also because large deformations introduce geometric nonlinearity. Therefore, we must take account their geometric nonlinearity in the analysis and find the equilibrated shape of cable structures. In this paper, to slove these problems, numerical procedures involving geometrical nonlinearity are introduced. They are applicable to general cable net, flexible transmission lines and suspended cable roof. These procedures are divided into two parts; one is to obtain the equilibrated shapes and stresses of the cable structures with uniform load by flexibility iteration method, the other is to analyse the equilibrated structures subjected to nodal external forces by nonlinear finite element method.

  • PDF

Seismic response modification factors for stiffness degrading soil-structure systems

  • Ganjavi, Behnoud;Bararnia, Majid;Hajirasouliha, Iman
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.159-170
    • /
    • 2018
  • This paper aims to develop response modification factors for stiffness degrading structures by incorporating soil-structure interaction effects. A comprehensive parametric study is conducted to investigate the effects of key SSI parameters, natural period of vibration, ductility demand and hysteretic behavior on the response modification factor of soil-structure systems. The nonlinear dynamic response of 6300 soil-structure systems are studied under two ensembles of accelograms including 20 recorded and 7 synthetic ground motions. It is concluded that neglecting the stiffness degradation of structures can results in up to 22% underestimation of inelastic strength demands in soil-structure systems, leading to an unexpected high level of ductility demand in the structures located on soft soil. Nonlinear regression analyses are then performed to derive a simplified expression for estimating ductility-dependent response modification factors for stiffness degrading soil-structure systems. The adequacy of the proposed expression is investigated through sensitivity analyses on nonlinear soil-structure systems under seven synthetic spectrum compatible earthquake ground motions. A good agreement is observed between the results of the predicted and the target ductility demands, demonstrating the adequacy of the expression proposed in this study to estimate the inelastic demands of SSI systems with stiffness degrading structures. It is observed that the maximum differences between the target and average target ductility demands was 15%, which is considered acceptable for practical design purposes.