• Title/Summary/Keyword: nonlinear structure system

Search Result 1,104, Processing Time 0.032 seconds

An Observer Design for MIMO Nonlinear Systems

  • Lee, Sungryul;Yanghee Yee;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.189-194
    • /
    • 2002
  • This paper presents a state observer design for a class of MTMO nonlinear systems that has a block triangular structure. For this, the extension of the existing design for SISO triangular systems to MIMO cases is provided. Since the gain of the proposed observer. depends on a nonlinear part as well as a linear one of a system, it improves the transient performance of the high gain ob-server. Also, by using a generalized similarity transformation for the error dynamics, it is shown that order some boundedness condi-tion, the proposed observer guarantees the global exponential convergence of the estimation error. Finally, we will give a simulation example to show the validity of our design methodology.

A dynamical stochastic finite element method based on the moment equation approach for the analysis of linear and nonlinear uncertain structures

  • Falsone, Giovanni;Ferro, Gabriele
    • Structural Engineering and Mechanics
    • /
    • v.23 no.6
    • /
    • pp.599-613
    • /
    • 2006
  • A method for the dynamical analysis of FE discretized uncertain linear and nonlinear structures is presented. This method is based on the moment equation approach, for which the differential equations governing the response first and second-order statistical moments must be solved. It is shown that they require the cross-moments between the response and the random variables characterizing the structural uncertainties, whose governing equations determine an infinite hierarchy. As a consequence, a closure scheme must be applied even if the structure is linear. In this sense the proposed approach is approximated even for the linear system. For nonlinear systems the closure schemes are also necessary in order to treat the nonlinearities. The complete set of equations obtained by this procedure is shown to be linear if the structure is linear. The application of this procedure to some simple examples has shown its high level of accuracy, if compared with other classical approaches, such as the perturbation method, even for low levels of closures.

Nonlinear Wave Transformation and Dynamic Behaviors of Semi-Submerged Air-Chamber Floating Breakwater (반잠수압기형부방파제의 비선형파랑변형 및 동적거동에 관한 연구)

  • Kim, D.S.
    • Journal of Korean Port Research
    • /
    • v.10 no.1
    • /
    • pp.25-36
    • /
    • 1996
  • Generally, it is pointed out that a nonlinear analysis is needed to estimate accurately the water surface fluctuation and dynamic responses of a floating structure in case of large wave reflection. In this study, a frequency-domain method is applied and newly developed to analyze the nonlinear characteristics of the air-chamber floating breakwater. The air-chamber floating breakwater in this study can control well the wave transformation, motions of the structure and its natural frequency by adjusting the air depth in the chamber. Experiments are carried out to verify the numerical results. It is appeared that the mean water level is setup in the anti-node and setdown in the node, while the nonlinearity in wave profile is larger in the node than in the anti-node. Because of vertical mooring system, the sway, especially the time-independent nonlinear component, plays predominant role in the motion. On the other hand, the time-dependent component, as well as the time-independent one to the tensile force of mooring line contributes greatly, and the time averaged value presents tensional force oriented to the onshore side due drift force.

  • PDF

Design of nonlinear optimal regulators using lower dimensional riemannian geometric models

  • Izawa, Yoshiaki;Hakomori, Kyojiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.628-633
    • /
    • 1994
  • A new Riemannian geometric model for the controlled plant is proposed by imbedding the control vector space in the state space, so as to reduce the dimension of the model. This geometric model is derived by replacing the orthogonal straight coordinate axes on the state space of a linear system with the curvilinear coordinate axes. Therefore the integral manifold of the geometric model becomes homeomorphic to that of fictitious linear system. For the lower dimensional Riemannian geometric model, a nonlinear optimal regulator with a quadratic form performance index which contains the Riemannian metric tensor is designed. Since the integral manifold of the nonlinear regulator is determined to be homeomorphic to that of the linear regulator, it is expected that the basic properties of the linear regulator such as feedback structure, stability and robustness are to be reflected in those of the nonlinear regulator. To apply the above regulator theory to a real nonlinear plant, it is discussed how to distort the curvilinear coordinate axes on which a nonlinear plant behaves as a linear system. Consequently, a partial differential equation with respect to the homeomorphism is derived. Finally, the computational algorithm for the nonlinear optimal regulator is discussed and a numerical example is shown.

  • PDF

Nonlinear interaction analysis of infilled frame-foundation beam-homogeneous soil system

  • Hora, M.S.
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.267-289
    • /
    • 2014
  • A proper physical modeling of infilled building frame-foundation beam-soil mass interaction system is needed to predict more realistic and accurate structural behavior under static vertical loading. This is achieved via finite element method considering the superstructure, foundation and soil mass as a single integral compatible structural unit. The physical modelling is achieved via use of finite element method, which requires the use of variety of isoparametric elements with different degrees of freedom. The unbounded domain of the soil mass has been discretized with coupled finite-infinite elements to achieve computational economy. The nonlinearity of soil mass plays an important role in the redistribution of forces in the superstructure. The nonlinear behaviour of the soil mass is modeled using hyperbolic model. The incremental-iterative nonlinear solution algorithm has been adopted for carrying out the nonlinear elastic interaction analysis of a two-bay two-storey infilled building frame. The frame and the infill have been considered to behave in linear elastic manner, whereas the subsoil in nonlinear elastic manner. In this paper, the computational methodology adopted for nonlinear soil-structure interaction analysis of infilled frame-foundation-soil system has been presented.

A Study on the Unstable behavior According to rise-span ratio of dome type space frame (돔형 공간 구조물의 Rise-span 비에 따른 불안정 거동 특성에 관한 연구)

  • Shon, Su-Deok;Kim, Seung-Deog;Kang, Moon-Myung
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.75-82
    • /
    • 2004
  • Many researcher's efforts have made a significant advancement of space frame structure with various portion, and it becomes the most outsanding one of space structures. However, with the characteristics of thin and long term of spacing, the unstable behavior of space structure is shown by initial imperfection, erection procedure or joint, especially space frame structure represents more. This kind of unstable problem could not be set up clearly and there is a huge difference between theory and experiment. Moreover, the discrete structure such as space frame has more complex solution, this it is not easy to derive the formulation of design about space structure. In this space frame structure, the character of rise-span ratio or load mode is represented by the instability of space frame structure with initial imperfection, and snap-through or bifurcation might be the main phenomenon. Therefore, in this study, space frame structure which has a lot of aesthetic effect and profitable for large space covering single layer is dealt. And because that the unstable behavior due to variation of inner force resistance in the elastic range is very important collapse mechanism, I would like to investigate unstable character as a nonlinear behavior with a geometric nonlinear. In order to study the instability. I derive tangent stiffness matrix using finite element method and with displacement incremental method perform nonlinear analysis of unit space structure, star dome and 3-ring star dome considering rise-span $ratio(\mu}$ and load $ratio(R_L)$ for analyzing unstable phenomenon.

  • PDF

Nonlinear behavior of concrete gravity dams and effect of input spatially variation

  • Mirzabozorg, H.;Kianoush, R.;Varmazyari, M.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.365-377
    • /
    • 2010
  • In the present article, effect of non-uniform excitation due to spatially variation of seismic input on nonlinear response of concrete gravity dams is considered. The reservoir is assumed compressible. Isotropic damage mechanics approach is used to model static and dynamic nonlinear behavior of mass concrete in 2D space. The validity of utilized nonlinear model is considered using available theoretical results under static and dynamic conditions. The tallest monolith of Pine Flat dam is selected as a case study. Two cases are analyzed for considering the effect of limited wave propagation velocity on seismic behavior of the dam-reservoir system in which travelling velocities are chosen as 2000 m/s and infinity. It is found that tensile damage in neck and toe regions and also, in the vicinity of the base increase when the system is excited non-uniformly.

Nonlinear Noise Attenuator by Adaptive Wiener Filter with Neural Network (신경망 구조의 적응 Wiener 필터를 이용한 비선형 잡음감쇠기)

  • Haeng-Woo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.71-76
    • /
    • 2023
  • This paper studied a method of attenuating nonlinear noise using a Wiener filter of a neural network structure in an acoustic noise attenuator. This system improves nonlinear noise attenuation performance with a deep learning algorithm using a neural network Wiener filter instead of using a conventional adaptive filter. A voice is estimated from a single input voice signal containing nonlinear noise using a 128-neuron, 8-neuron hidden layer and an error back propagation algorithm. In this study, a simulation program using the Keras library was written and a simulation was performed to verify the attenuation performance for nonlinear noise. As a result of the simulation, it can be seen that the noise attenuation performance of this system is significantly improved when the FNN filter is used instead of the Wiener filter even when nonlinear noise is included. This is because the complex structure of the FNN filter expresses any type of nonlinear characteristics well.

Material model for load rate sensitivity

  • Kozar, Ivica;Ibrahimbegovic, Adnan;Rukavina, Tea
    • Coupled systems mechanics
    • /
    • v.7 no.2
    • /
    • pp.141-162
    • /
    • 2018
  • This work presents a novel model for analysis of the loading rate influence onto structure response. The model is based on the principles of nonlinear system dynamics, i.e., consists of a system of nonlinear differential equations. In contrast to classical linearized models, this one comprises mass and loading as integral parts of the model. Application of the Kelvin and the Maxwell material models relates the novel formulation to the existing material formulations. All the analysis is performed on a proprietary computer program based on Wolfram Mathematica. This work can be considered as an extended proof of concept for the application of the nonlinear solid model in material response to dynamic loading.

Fuzzy Rule for Curve Path Tracking of a Unicycle Robot (유니사이클 로봇의 곡선경로 추종을 위한 퍼지규칙)

  • 김중완;정희균
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.425-429
    • /
    • 1996
  • Our unicycle has simple mechanical structure. But unicycle's dynamic system is a very sensitive unstable nonlinear system. In this paper, a fuzzy inference control mechanism was established throughout an inquiry into human riding a unicycle, and we developed a direct fuzzy controller to control our unicycle robot. This proposed fuzzy controller is consisted with fuzzy logic controllers for attitude stability and wheel's velocity. Computer simulation results show that our fuzzy controller has very powerful performance to unstable nonlinear unicycle robot system.

  • PDF