• 제목/요약/키워드: nonlinear stiffness

검색결과 1,102건 처리시간 0.026초

타이어의 강성계수에 관한 고찰 (A Study on the Stiffness of Tire)

  • 이상선;반재삼;김항우;조규종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.886-889
    • /
    • 2002
  • Finite Element Method for 3-D static loaded passenger car tire on the rigid surface is performed for studying the stiffness of tire to compare with experimental data. The tire elements used for FEM are defined each component to allow an easy change for the design parameters. Also, a hyperelastic material which is composed of tread and sidewall has been used to consider a large deformation of rubber components. The orthotropic characters of rubber-cord composite materials are used as well. The air pressure, a vertical and a lateral load are applied step by step and iterated by Modified Newton method for geometric and boundary condition nonlinear simulation. This study shows nonlinear analysis method for tire and the bearing capacity of tire due to the external force.

  • PDF

직접비탄성 슬래브 설계법의 개발 (Direct Inelastic Slab Design)

  • 정원희;박홍근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.498-501
    • /
    • 2004
  • A new slab design using secant stiffness, Direct Inelastic Slab Design, was developed. Since basically the proposed design method uses linear analysis, it is convenient and stable in numerical analysis. At the same time, the proposed design method can accurately estimate the inelastic strength and ductility demands of slab because it can analyzes the inelastic behavior of structure using iterative calculations for secant stiffness. In the present study, the procedure of the proposed design method was established, and a computer program incorporating the proposed method was developed. Design examples using the proposed method were presented, and compared with traditional nonlinear analysis, and experiments. The Direct Inelastic Slab Design, as an integrated analysis/design method, can directly address the design strategy intended by the engineer, such as moment strength and ductility limit. As a result, economical and safe design can be achieved.

  • PDF

Numerical method for biaxially loaded reinforced and prestressed concrete slender columns with arbitrary section

  • Lou, T.J.;Xiang, Y.Q.
    • Structural Engineering and Mechanics
    • /
    • 제28권5호
    • /
    • pp.587-601
    • /
    • 2008
  • In this study, a numerical procedure based on the finite element method for materially and geometrically nonlinear analysis of reinforced and prestressed concrete slender columns with arbitrary section subjected to combined biaxial bending and axial load is developed. In order to overcome the low computer efficiency of the conventional section integration method in which the reinforced concrete section is divided into a large number of small areas, an efficient section integration method is used to determine the section tangent stiffness. In this method, the arbitrary shaped cross section is divided into several concrete trapezoids according to boundary vertices, and the contribution of each trapezoid to section stiffness is determined by integrating directly the trapezoid. The space frame flexural theory is utilized to derive the element tangent stiffness matrix. The nonlinear full-range member response is traced by an updated normal plane arc-length solution method. The analytical results agree well with the experimental ones.

A new lateral load pattern for pushover analysis in structures

  • Pour, H. Gholi;Ansari, M.;Bayat, M.
    • Earthquakes and Structures
    • /
    • 제6권4호
    • /
    • pp.437-455
    • /
    • 2014
  • Some conventional lateral load patterns for pushover analysis, and proposing a new accurate pattern was investigated in present research. The new proposed load pattern has load distribution according weight and stiffness variation in height and mode shape of structure. The assessment of pushover application with mentioned pattern in X type braced steel frames and steel moment resisting frames, with stiffness and mass variation in height, was studied completely and the obtained results were compared with nonlinear dynamic analysis method (including time history analysis). The methods were compared from standpoints of some basic parameters such as displacement, drift and shape of lateral load pattern. It is concluded that proposed load pattern results are closer to nonlinear dynamic analysis (NDA) compared to other pushover load patterns especially in tall and medium-rise buildings having different stiffness and mass during the height.

비선형 보상기와 피드포워드 제어에 의한 로봇의 위치/힘 제어 (Position/Force Control of a Robot by a Nonlinear Compensator and Feedforward Control)

  • 황용연
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권2호
    • /
    • pp.232-240
    • /
    • 1998
  • This paper deals with a hybrid position/force control of a robot which is moving on the constrained object with constant force. The proposed controller is composed of a position and force controller. The position controller has a nonlinear compensator which is based on the dynamic robot model and the force controller is attached by feedforward element. A direct drive robot with hard nonlinearity which is controlled by the proposed algorithm has moved on the constrained object with a high stiffness and low stiffness. The results show that the proposed controller has more vibration suppression effects which is occurred to the constrained object with a high stiffness, than a existing feedback controller, and accurate force control can be obtained by comparatively a small feedback gain.

  • PDF

막구조물의 파손단면에서의 응력집중 현상에 관한 연구 (A Study on the Stress Concentration at Crack of Membrane Structures)

  • 전진형;정을석;김승덕
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2005년도 춘계학술발표회 및 정기총회 2권1호(통권2호)
    • /
    • pp.89-98
    • /
    • 2005
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The material property of the membrane has strong axial stiffness, but little bending stiffness. Therefore membrane structures arc unstable structures initially. These soft structures need to be introduced initial stresses first because of its initial unstable state, and it happens large deformation phenomenon. To find the structural shape after large deformation caused by initial stiffness introduced, we need the shape analysis considering geometric nonlinearity in structural design procedure. In this study, we investigate into the stress concentration at crack of membrane structures. Therefore, using the nonlinear analysis program that NASS (Nonlinear Analysis for Spatial Structures) perform nonlinear analysis, and stress distribution for creak length investigate for using linear elastic fracture mechanics.

  • PDF

X, Y 방향에 따른 상부벽식-하부골조의 비선형 정적응답특성 (The Response Characteristics of Nonlinear Pushover Analysis of Upper Wall-Lower Frame System with X and Y-Directions)

  • 강병두;전대한;김재웅
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.209-216
    • /
    • 2003
  • The purpose of this study is to investigate the response characteristics of pushover analysis of upper wall-lower frame system with X and Y-directions' lateral load Pushover analysis estimates initial elastic stiffness, post-yielding stiffness, and plastic hinges on each story of structures through three-dimensional nonlinear analysis program. The conclusions of this study are as follows; (1) As a result of pushover analysis, the magnitude of nonlinear response and distribution of yield hinge in lower structure are similar with both X and Y directions, but not in upper structure because of different relative stiffness. (2) The maximum drift ratio of roof is larger for X-direction than for Y-direction with respect to magnitude of shear wall areas in upper structure.

  • PDF

Large displacement geometrically nonlinear finite element analysis of 3D Timoshenko fiber beam element

  • Hu, Zhengzhou;Wu, Minger
    • Structural Engineering and Mechanics
    • /
    • 제51권4호
    • /
    • pp.601-625
    • /
    • 2014
  • Based on continuum mechanics and the principle of virtual displacements, incremental total Lagrangian formulation (T.L.) and incremental updated Lagrangian formulation (U.L.) were presented. Both T.L. and U.L. considered the large displacement stiffness matrix, which was modified to be symmetrical matrix. According to the incremental updated Lagrangian formulation, small strain, large displacement, finite rotation of three dimensional Timoshenko fiber beam element tangent stiffness matrix was developed. Considering large displacement and finite rotation, a new type of tangent stiffness matrix of the beam element was developed. According to the basic assumption of plane section, the displacement field of an arbitrary fiber was presented in terms of nodal displacement of centroid of cross-area. In addition, shear deformation effect was taken account. Furthermore, a nonlinear finite element method program has been developed and several examples were tested to demonstrate the accuracy and generality of the three dimensional beam element.

와이어 충돌감쇠를 갖는 다공성 박판의 비선형 진동 해석 (Nonlinear Vibration Analysis of Porous Thin Plate with Wire Impact Damping)

  • 김성대;김원진;이부윤;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.341-348
    • /
    • 2001
  • In this study, nonlinear vibration analysis of the cylindrical orthotropic porous thin plate under V-shaped tension distribution with wire impact damping is considered. We make dynamic model of the plate under the tension using commercial FEM code and reduce the number of its degrees of freedom using dynamic condensation. The dynamic model of wire is obtained as lumped mass model from string equation. And then we analyze the nonlinear vibration of the plate including the impact phenomenon between the plate and the wire using the reduced mass and stiffness matrices of the plate and lumped model of the wire. The contact phenomenon between them can be described by impact contact elements composed of contact stiffness coefficients from Hertzian contact theory and contact damping coefficients from restitution coefficient between them. And we discussed the results of nonlinear vibration analysis for variations of their design parameters.

  • PDF

초고속 원심분리 회전축계의 최적설계 (An Optimum Design of a Rotor-Bearing Spindle System for a Ultra Centrifuge)

  • 김종립;윤기찬;박종권
    • 한국정밀공학회지
    • /
    • 제15권6호
    • /
    • pp.145-152
    • /
    • 1998
  • This paper presents an optimum design of a rotor-bearing spindle system for a ultra centrifuge (80,000 RPM) supported by ball bearings with nonlinear stiffness characteristics. To obtain the nonlinear bearing stiffnesses, a ball bearing is modeled in five degrees of freedom and is analyzed quasi-statically. The dynamic behaviors of the nonlinear rotor-bearing system are analyzed by using a transfer-matrix method iteratively. For optimization. we use the cost function that simultaneously minimizes the weight of a rotor and maximizes the separation margins to yield the critical speeds as far from the operating speed as possible. Augmented Lagrange Multiplier (ALM) method is employed for the nonlinear optimization problem. The result shows that the rotor-bearing spindle system is optimized to obtain 9.5% weight reduction and 21% separation margin.

  • PDF