• 제목/요약/키워드: nonlinear soil spring

검색결과 29건 처리시간 0.027초

지반의 강성특성을 고려한 지반-돌핀구조계의 동적해석 (Dynamic Analysis of Mooring Dolphin System Considering Soil Properties)

  • 이진학;오세붕;윤정방;홍섭;김진하
    • 한국해양공학회지
    • /
    • 제12권3호통권29호
    • /
    • pp.19-30
    • /
    • 1998
  • In this paper, the dynamic analysis of a dolphin system for mooring a floating structure such as barge mounted plant is studied. The characteristics of the soil-pile system are simplified by a set of equivalent spring elements at the mudline. To evaluate the equivalent spring constants, the finite difference method is used. Since the characteristics of the soil-pile system are nonlinear in case of soft foundation, the nonlinear dynamic analysis technique is needed. The Newmark $beta$ method incorporating the modified Newton-Raphson method(initial stiffness method) is used. A numerical analysis is performed on two mooring dolphin systems on soft foundation and rock foundation. In case of the rock foundation, the characteristics are found to be nearly linear, so the linear dynamic analysis may be sufficient to consider the foundation effect. But in case of soft foundation, the non-linearity of the foundation appears to be very signigicant, so the nonlinear dynamic analysis si needed.

  • PDF

Experimental investigation of the excitation frequency effects on wall stress in a liquid storage tank considering soil-structure-fluid interaction

  • Diego Hernandez-Hernandez;Tam Larkin;Nawawi Chouw
    • Structural Engineering and Mechanics
    • /
    • 제89권4호
    • /
    • pp.421-436
    • /
    • 2024
  • This research addresses experimentally the relationship between the excitation frequency and both hoop and axial wall stresses in a water storage tank. A low-density polyethylene tank with six different aspect ratios (water level to tank radius) was tested using a shake table. A laminar box with sand represents a soil site to simulate Soil-Structure Interaction (SSI). Sine excitations with eight frequencies that cover the first free vibration frequency of the tank-water system were applied. Additionally, Ricker wavelet excitations of two different dominant frequencies were considered. The maximum stresses are compared with those using a nonlinear elastic spring-mass model. The results reveal that the coincidence between the excitation frequency and the free-vibration frequency of the soil-tank-water system increases the sloshing intensity and the rigid-like body motion of the system, amplifying the stress development considerably. The relationship between the excitation frequency and wall stresses is nonlinear and depends simultaneously on both sloshing and uplift. In most cases, the maximum stresses using the nonlinear elastic spring-mass model agree with those from the experiments.

Buckling analysis of piles in weak single-layered soil with consideration of geometric nonlinearities

  • Emina Hajdo;Emina Hadzalic;Adnan Ibrahimbegovic
    • Coupled systems mechanics
    • /
    • 제13권3호
    • /
    • pp.187-200
    • /
    • 2024
  • This paper presents a numerical model for buckling analysis of slender piles, such as micropiles. The model incorporates geometric nonlinearities to provide enhanced accuracy and a more comprehensive representation of pile buckling behavior. Specifically, the pile is represented using geometrically nonlinear beams with the von Karman deformation measure. The lateral support provided by the surrounding soil is modeled using the spring approach, with the spring stiffness determined according to the undrained shear strength of the soil. The numerical model is tested across a wide range of pile slenderness ratios and undrained shear strengths of the surrounding soil. The numerical results are validated against analytical solutions. Furthermore, the influence of various pile bottom end boundary conditions on the critical buckling force is investigated. The implications of the obtained results are thoroughly discussed.

지진하중을 받는 말뚝 시스템의 고유 진동수 예측 (Prediction of the Natural Frequency of a Soil-Pile-Structure System during an earthquake)

  • 양의규;권선용;최정인;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.976-984
    • /
    • 2009
  • This study proposes a simple method that uses a simple mass-spring model to predict the natural frequency of a soil-pile-structure system in sandy soil. This model includes a pair of matrixes, i.e., a mass matrix and a stiffness matrix. The mass matrix is comprised of the masses of the pile and superstructure, and the stiffness matrix is comprised of the stiffness of the pile and the spring coefficients between the pile and soil. The key issue in the evaluation of the natural frequency of a soil-pile system is the determination of the spring coefficient between the pile and soil. To determine the reasonable spring coefficient, subgrade reaction modulus, nonlinear p-y curves and elastic modulus of the soil were utilized. The location of the spring was also varied with consideration of the infinite depth of the pile. The natural frequencies calculated by using the mass-spring model were compared with those obtained from 1-g shaking table model pile tests. The comparison showed that the calculated natural frequencies match well with the results of the 1-g shaking table tests within the range of computational error when the three springs, whose coefficients were calculated using Reese's(1974) subgrade reaction modulus and Yang's (2009) dynamic p-y backbone curves, were located above the infinite depth of the pile.

  • PDF

A two-dimensional hyperbolic spring model for mat foundation in clays subjected to vertical load

  • Der-Wen Chang;Tzu-Min Chou;Shih-Hao Cheng;Louis Ge
    • Geomechanics and Engineering
    • /
    • 제37권5호
    • /
    • pp.527-538
    • /
    • 2024
  • This study proposes a two-dimensional hyperbolic soil spring model for mat foundations in clays subjected to vertically uniform loads to simplify the complexity of three-dimensional finite element analysis on mat foundations. The solutions from three-dimensional finite element analysis were examined to determine the hyperbolic model parameters of the soil springs underneath the slab. Utilizing these model parameters, normalized functions across the middle section of the mat were obtained. The solutions from the proposed model, along with the approximate finite difference analysis of the mat in clays under vertical load, were found to be consistent with those from the three-dimensional finite element analysis. The authors conclude that the proposed method can serve as an alternative for the preliminary design of mat foundations.

경계반력법을 이용한 지진격리 원전구조물의 비선형 지반-구조물 상호작용 해석 (Nonlinear Soil-Structure Interaction Analysis of a Seismically Isolated Nuclear Power Plant Structure using the Boundary Reaction Method)

  • 이은행;김재민;이상훈
    • 한국지진공학회논문집
    • /
    • 제19권1호
    • /
    • pp.37-43
    • /
    • 2015
  • This paper presents a detailed procedure for a nonlinear soil-structure interaction of a seismically isolated NPP(Nuclear Power Plant) structure using the boundary reaction method (BRM). The BRM offers a two-step method as follows: (1) the calculation of boundary reaction forces in the frequency domain on an interface of linear and nonlinear regions, (2) solving the wave radiation problem subjected to the boundary reaction forces in the time domain. For the purpose of calculating the boundary reaction forces at the base of the isolator, the KIESSI-3D program is employed in this study to solve soil-foundation interaction problem subjected to vertically incident seismic waves. Wave radiation analysis is also employed, in which the nonlinear structure and the linear soil region are modeled by finite elements and energy absorbing elements on the outer model boundary using a general purpose nonlinear FE program. In this study, the MIDAS/Civil program is employed for modeling the wave radiation problem. In order to absorb the outgoing elastic waves to the unbounded soil region, spring and viscous-damper elements are used at the outer FE boundary. The BRM technique utilizing KIESSI-3D and MIDAS/Civil programs is verified using a linear soil-structure analysis problem. Finally the method is applied to nonlinear seismic analysis of a base-isolated NPP structure. The results show that BRM can effectively be applied to nonlinear soil-structure interaction problems.

Mitigation of the seismic response of a cable-stayed bridge with soil-structure-interaction effect using tuned mass dampers

  • Kontoni, Denise-Penelope N.;Farghaly, Ahmed Abdelraheem
    • Structural Engineering and Mechanics
    • /
    • 제69권6호
    • /
    • pp.699-712
    • /
    • 2019
  • A cable-stayed bridge (CSB) is one of the most complicated structures, especially when subjected to earthquakes and taking into consideration the effect of soil-structure-interaction (SSI). A CSB of a 500 m mid-span was modeled by the SAP2000 software and was subjected to four different earthquakes. To mitigate the harmful effect of the vibration generated from each earthquake, four mitigation schemes were used and compared with the non-mitigation model to determine the effectiveness of each scheme, when applying on the SSI or fixed CSB models. For earthquake mitigation, tuned mass damper (TMD) systems and spring dampers with different placements were used to help reduce the seismic response of the CBS model. The pylons, the mid-span of the deck and the pylon-deck connections are the best TMDs and spring dampers placements to achieve an effective reduction of the earthquake response on such bridges.

교량 말뚝기초의 단부 지점조건의 영향분석 (Influence of Pile Cap's Boundary Conditions in Piled Pier Structures)

  • 정상섬;원진오
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.25-32
    • /
    • 2005
  • Modeling techniques of piled pier were reviewed and the influences of pile cap's boundary conditions were analyzed in this study. Among various modeling techniques, equivalent cantilever method seems relatively simple for modeling pile groups and it has some problems to determine the virtual fixed points. Through the analyses, it was found that the method of nonlinear p-y model with soil springs was more appropriate than equivalent cantilever method. The method modeling a pile group using stiffness matrix seems useful for practical design, which can represent the nonlinear three-dimensional behavior of a piled pier. In this study, the stiffness matrix of a pile group could be estimated efficiently and precisely using three-dimensional nonlinear analysis programs of pile groups (FBPier 3.0, YSGroup).

  • PDF

교대-토체의 강성저하를 고려한 교량의 지진거공분석 (Seismic Behavior Analysis of a Bridge Considering stiffness Degradation due to Abutment-Soil Interaction)

  • 김상효
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.357-366
    • /
    • 2000
  • Longitudinal dynamic behaviors of a bridge system under seismic excitations are examined with various magnitudes of peak ground accelerations. The stiffness degradation due to abutment-soil interaction is considered in the bridge model which may play the major role upon the global dynamic characteristics. The idealized mechanical model for the whole ridge system is proposed by adopting the multiple-degree-of-freedom system which can consider components such as pounding phenomena friction at the movable supports rotational and translational motions of foundations and the nonlinear pier motions. The abutment-soil interaction is simulated by utilizing the one degree-of-freedom system with nonlinear spring. The stiffness degradation of the abutment-soil system is found to increase the relative displacement under moderate seismic excitations.

  • PDF

비선형 SSI 해석을 위해 Spring-Damper 에너지 흡수경계조건을 적용한 BRM의 유한요소 모델링 범위에 따른 응답평가 (Evaluation of the Response of BRM Analysis with Spring-Damper Absorbing Boundary Condition according to Modeling Extent of FE Region for the Nonlinear SSI Analysis)

  • 이은행;김재민;정두리;주광호
    • 한국전산구조공학회논문집
    • /
    • 제29권6호
    • /
    • pp.499-512
    • /
    • 2016
  • 경계반력법은 일반적인 복합법에서 필요한 진동수영역과 시간영역의 반복 작업이 필요없는 두 단계의 시간수영역 부구조법이다. 경계반력법은 다음의 두 단계로 나누어진다: (1) 진동수영역에서 선형구간과 비선형구간 경계에서 경계반력계산, (2) 시간영역에서 경계반력을 이용한 파동방사형문제 해석. 이때 시간영역에서는 파동방사형문제를 모사하기 위해 근역지반을 모델링한다. 이 연구에서는 면진원전구조물의 비선형 SSI 해석을 위한 BRM 해석의 근역지반 모델링 범위에 따른 응답을 평가하였다. 이를 위해 등가선형 SSI 문제를 이용하여 매개변수해석을 수행하였다. BRM 응답의 정확성을 평가하기 위해 BRM 응답은 재래의 SSI 해석의 응답과 비교하였다. 수치해석결과 BRM 해석을 위한 근역지반 모델링 범위는 기초의 크기뿐만 아니라 지반조건의 영향을 받았다. 마지막으로, BRM 해석을 면진원전구조물의 비선형 SSI 해석에 적용하므로 BRM의 정확성과 효율성을 입증하였다.