• Title/Summary/Keyword: nonlinear seismic behavior

Search Result 542, Processing Time 0.025 seconds

Investigating the effect of bond slip on the seismic response of RC structures

  • Fallah, Mohammad Mehdi;Shooshtari, Ahmad;Ronagh, Hamid Reza
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.695-711
    • /
    • 2013
  • It is reasonable to assume that reinforced concrete (RC) structures enter the nonlinear range of response during a severe ground motion. Numerical analysis to predict the behaviour therefore must allow for the presence of nonlinear deformations if an accurate estimate of seismic response is aimed. Among the factors contributing to inelastic deformations, the influence of the degradation of the bond slip phenomenon is important. Any rebar slip generates an additional rotation at the end regions of structural members which are not accounted for in a conventional analysis. Although these deformations could affect the seismic response of RC structures considerably, they are often neglected due to the unavailability of suitable models. In this paper, the seismic response of two types of RC structures, designed according to the Iranian concrete code (ABA) and the Iranian seismic code (2800), are evaluated using nonlinear dynamic and static analyses. The investigation is performed using nonlinear dynamic and static pushover analysis considering the deformations due to anchorage slip. The nonlinear analysis results confirm that bond slip significantly influences the seismic behavior of RC structure leading to an increase of lateral deformations by up to 30% depending on the height of building. The outcomes also identify important parameters affecting the extent of this influence.

Modelling of reinforced concrete flat slab-column connections for system-scale seismic analyses of high-rise buildings

  • T.Y. Yang;O. AlHarras;L. Tobber;O. Sargazi
    • Computers and Concrete
    • /
    • v.31 no.1
    • /
    • pp.23-32
    • /
    • 2023
  • Reinforced concrete flat slab (RCFS) with columns is a standard gravity floor system for tall buildings in North America. Typically, RCFS-column connections are designed to resist gravity loads, and their contribution to resisting seismic forces is ignored. However, past experimental research has shown that RCFS-column connections have some strength and ductility, which may not be ignored. Advanced numerical models have been developed in the past to determine the nonlinear cyclic behavior of RCFS-column connections. However, these models are either too complicated for nonlinear dynamic analysis of an entire building or not developed to model the behavior of modern RCFS-column connections. This paper proposes a new nonlinear model suitable for modern RCFS-column connections. The numerical model is verified using experimental data of specimens with various material and reinforcement properties. A 40-story RC shear wall building was designed and analyzed to investigate the influence of RCFS on the global response of tall concrete buildings. The seismic responses of the building with and without the RCFS were modelled and compared. The results show that the modelling of RCFS has a significant impact on the inter-story drifts and force demands on both the seismic force-resisting and gravity elements.

Seismic Analysis of Tunnel Response by Response Displacement Method (응답변위법에 의한 터널의 내진해석)

  • Yun, Se-Ung;Shin, Jong-Ho;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.457-462
    • /
    • 2009
  • In this study, seismic analysis is performed using simplified method, analytical solution and numerical analysis based on one-dimensional seismic site response analysis. The results show that analytical solution of tunnel response is predicted more conservative than numerical solution. And simplified method is not appropriate for seismic analysis of tunnel response. In addition, it is reasonable to determine shear-modulus reduction ratio performing seismic site response analysis to consider ground nonlinear-behavior.

  • PDF

A Study on Seismic Behavior of Space Frame Bridge Using Three-Dimensional Nonlinear Dynamic Analysis (3차원 비선형 동적해석을 이용한 입체라멘교의 지진거동특성에 관한 연구)

  • 김익현
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.5
    • /
    • pp.45-51
    • /
    • 2002
  • The characteristics of nonlinear seismic behavior and failure mechanism of RC space frame in railroad viaducts have been studied by the numerical analysis in time domain. The structure concerned is modeled in 3 dimensional extent and the RC frame elements consisting of fibers are employed for the columns. The fibers are characterized as RC zone and PC one to distinguish the different energy release after cracking resulted from the bond characteristic between concrete and re-bar. Due to the deviation of the mass center and the stiffness center of the entire structure the complex behavior is shown under seismic actions. The excessive shear force is concentrated on the column beside flexible one relatively, which leads to the failure of bridge concerned.

Seismic Analysis of Underground RC Structures considering Interface between Structure and Soil (경계면 요소를 고려한 지하 철근콘크리트 구조물의 지진해석)

  • 남상혁;변근주;송하원;박성민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.87-92
    • /
    • 2000
  • The real situation of an underground reinforced concrete(RC) structure with the surrounding soil medium subjected to seismic load is quite difficult to be simulated through an expensive work and, even if it is possible to arrange such an experiment, it will be too expensive. So development of analytical method can be applied usefully to seismic design and seismic retrofit through an analysis of seismic behavior and seismic performance evaluation. A path-dependent constitutive model for soil that can estimate the response of soil layer is indispensible for dealing with kinematic interaction of RC/soil entire system under seismic loads. And interface model which deals with the dynamic interaction of RC/soil entire system is also necessary. In this study, finite element analysis program that can consider path-dependent behavior of RC and soil, and interfacial behavior between RC and soil is developed for rational seismic analysis of RC/soil entire system. Using this program, nonlinear behavior of interface between RC and soil is analyzed, and the effect of interfacial behavior to entire system is investigated.

  • PDF

Response modification factors of concrete bridges with different bearing conditions

  • Zahrai, Seyed Mehdi;Khorraminejad, Amir;Sedaghati, Parshan
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.185-196
    • /
    • 2019
  • One of the shortcomings of seismic bridge design codes is the lack of clarity in defining the role of different seismic isolation systems with linear or nonlinear behavior in terms of R-factor. For example, based on AASHTO guide specifications for seismic isolation design, R-factor for all substructure elements of isolated bridges should be half of those expressed in the AASHTO standard specifications for highway bridges (i.e., R=3 for single columns and R=5 for multiple column bent) but not less than 1.50. However, no distinction is made between two commonly used types of seismic isolation devices, i.e., elastomeric rubber bearing (ERB) with linear behavior, and lead rubber bearing (LRB) with nonlinear behavior. In this paper, five existing bridges located in Iran with two types of deck-pier connection including ERB and LRB isolators, and two bridge models with monolithic deck-pier connection are developed and their R-factor values are assessed based on the Uang's method. The average R-factors for the bridges with ERB isolators are calculated as 3.89 and 4.91 in the longitudinal and transverse directions, respectively, which are not in consonance with the AASHTO guide specifications for seismic isolation design (i.e., R=3/2=1.5 for the longitudinal direction and R=5/2=2.5 for the transverse direction). This is a clear indicator that the code-prescribed R-factors are conservative for typical bridges with ERB isolators. Also for the bridges with LRB isolators, the average computed R-factors equal 1.652 and 2.232 in the longitudinal and transverse directions, respectively, which are in a good agreement with the code-specified R-factor values. Moreover, in the bridges with monolithic deck-pier connection, the average R-factor in the longitudinal direction is obtained as 2.92 which is close to the specified R-factor in the bridge design codes (i.e., 3), and in the transverse direction is obtained as 2.41 which is about half of the corresponding R-factor value in the specifications (i.e., 5).

Seismic Performance Evaluation of Existing Buildings with Engineer-oriented Computerized System (엔지니어기반 전산시스템을 적용한 철근콘크리트 기존 건축물의 내진성능평가)

  • Hwang, Sunwoo;Kim, Dong-Yeon;Kim, Taejin;Kim, Kyungtae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.105-114
    • /
    • 2017
  • Nonlinear analysis for seismic performance evaluation of existing building usually takes 4~5 times more than linear analysis based on KBC code. To obtain accurate results from the nonlinear analysis, there are a lot of things to be considered for nonlinear analysis modeling. For example, reinforcing layout, applied load and seismic details affect behavior of structural members for the existing building. Engineer-oriented computerized system was developed for engineers to evaluate effective seismic performance of existing buildings with abiding by seismic design principles. Using the engineer-oriented program, seismic performance evaluation of reinforced concrete building was performed. Nonlinear hinge properties were applied with real time multiple consideration such as section layout, section analysis result, applied load and performance levels. As a result, the building was evaluated to satisfy LS(Life Safety) performance level. A comparison between engineer-oriented and program-oriented results is presented to show how important the role of structural engineer is for seismic performance evaluation of existing buildings.

The influence of vertical ground motion on the seismic behavior of RC frame with construction joints

  • Yu, Jing;Liu, Xiaojun
    • Earthquakes and Structures
    • /
    • v.11 no.3
    • /
    • pp.407-420
    • /
    • 2016
  • The aim of this study is to investigate the effect of vertical ground motion (VGM) on seismic behavior of reinforced concrete (RC) regular frame with construction joints, and determine more proper modeling method for cast-in-situ RC frame. The four-story RC frames in the regions of 7, 8 and 9 earthquake intensity were analyzed with nonlinear dynamic time-history method. Two different methods of ground motion input, horizontal ground motion (HGM) input only, VGM and HGM input simultaneously were performed. Seismic responses in terms of the maximum vertex displacement, the maximum inter-story drift distribution and the plastic hinge distribution were analyzed. The results show that VGM might increase or decrease the horizontal maximum vertex displacement depending on the value of axial load ratio of column. And it will increase the maximum inter-story drift and change its distribution. Finally, proper modeling method is proposed according to the distribution of plastic hinges, which is in well agreement with the actual earthquake damage.

The Influence of Lap Splice of Longitudinal Bars in the Plstic Hinge Zone on the Nonlinear Behavior Characteristics of RC Piers and New Seismic Detailing Concept in Moderate Seismicity Region (소성힌지 영역의 주철근 겹이음에 의한 RC교각의 비선형 거동특성 및 중약진지역의 내진설계 개선방향)

  • 장승필
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.335-340
    • /
    • 2000
  • The influence of lap splice of longitudinal bars in the plastic hinge zone on the nonlinear behavior characteristics of RC piers has been investigated through the scale model tests. The seismic performance of bridge piers with lap splice is found to be insufficient due to the premature bond failure. On the other hand it is confirmed that the preventing lap splice in the plastic hinge zone enhance the seismic performance considerably even without the seismic details of transverse reinforcements. Bases on these experimental results new seismic detailing concept appropriate to moderate seismicity region has been proposed.

  • PDF

Effect of masonry infill walls with openings on nonlinear response of reinforced concrete frames

  • Ozturkoglu, Onur;Ucar, Taner;Yesilce, Yusuf
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.333-347
    • /
    • 2017
  • Masonry infill walls are unavoidable parts of any building to create a separation between internal space and external environment. In general, there are some prevalent openings in the infill wall due to functional needs, architectural considerations or aesthetic concerns. In current design practice, the strength and stiffness contribution of infill walls is not considered. However, the presence of infill walls may decisively influence the seismic response of structures subjected to earthquake loads and cause a different behavior from that predicted for a bare frame. Furthermore, partial openings in the masonry infill wall are significant parameter affecting the seismic behavior of infilled frames thereby decreasing the lateral stiffness and strength. The possible effects of openings in the infill wall on seismic behavior of RC frames is analytically studied by means of pushover analysis of several bare, partially and fully infilled frames having different bay and story numbers. The stiffness loss due to partial opening is introduced by the stiffness reduction factors which are developed from finite element analysis of frames considering frame-infill interaction. Pushover curves of frames are plotted and the maximum base shear forces, the yield displacement, the yield base shear force coefficient, the displacement demand, interstory drift ratios and the distribution of story shear forces are determined. The comparison of parameters both in terms of seismic demand and capacity indicates that partial openings decisively influences the nonlinear behavior of RC frames and cause a different behavior from that predicted for a bare frame or fully infilled frame.