• Title/Summary/Keyword: nonlinear response spectra

Search Result 78, Processing Time 0.028 seconds

The optimum damper retrofit of cabinet structures by genetic (유전자알고리즘을 이용한 캐비닛 구조의 최적감쇠보강)

  • 이계희;최익창;하동호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.379-386
    • /
    • 2004
  • The optimal seismic retrofitting of NPP(Nuclear Power Plant) cabinet structures that contained class 1 relays were studies in this paper. During earthquake event, the failure modes of relays are not appeared in form of structural failure, but are appeared in form of contact chatter of relay. Therefore, the retrofitting of cabinet has to be aimed to the reducing of the structural response, such as acceleration. In this study, the optimal characteristic values of dampers were searched by μ-GA (micro-Genetic Algorithm) scheme for several installation patterns. To keep accuracy and efficiency of analysis, the structural models of cabinet were considered as a frame structure. The responses of structure were obtained in form of acceleration response spectra derived from the results of nonlinear time history analysis including damping nonlinearity. The fitness function of the optimum procedure was constructed based on the ratio of maximum spectral value and target GERS (General Equipment Ruggedness Spectra). The results show the good improvements of fitness fur adequate retrofitting pattern. Especially, the improvements of fitness were remarkable when the damping exponents are proper.

  • PDF

Nonlinear Seismic Estimates of Recorded and Simulated Ground Motions Normalized by the Seismic Design Spectrum (설계용 탄성응답스펙트럼으로 규준화된 인공지진동과 기록지진동의 비선형 지진응답)

  • Jun, Dae-Han;Kang, Pyeong-Doo;Kim, Jae-Ung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.25-33
    • /
    • 2011
  • In the nonlinear response history analysis of building structures, the input ground accelerations have considerable effect on the nonlinear response characteristics of structural systems. As the properties of the ground motion, using time history analysis, are interrelated with many factors such as the fault mechanism, the seismic wave propagation from source to site, and the amplification characteristics of the soil, it is difficult to properly select the input ground motions for seismic response analysis. In this paper, the most unfavourable real seismic design ground motions were selected as input motions. The artificial earthquake waves were generated according to these earthquake events. The artificial waves have identical phase angles to the recorded earthquake waves, and their overall response spectra are compatible with the seismic design spectrum with 5% of critical viscous damping. It is concluded that the artificial earthquake waves simulated in this paper are applicable as input ground motions for a seismic response analysis of building structures.

Response Spectra of Structure Installed Frictional Damping System (마찰형 감쇠를 갖는 구조물의 응답 스펙트럼)

  • Park, Ji-Hun;Youn, Kyong-Jo;Min, Kyung-Won;Lee, Sang-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.893-897
    • /
    • 2006
  • Structures with additional frictional damping system have strong nonlinearity that the dynamic behavior is highly affected. by the relative magnitude between frictional force and excitation load. In this study, normalized response spectra of the structures with non-dimensional friction force are obtained through nonlinear time history analyses of the mass-normalized single degree of freedom systems using 20 ground motion data recorded on rock site. The variation of the control performance of frictional damping system is investigated in terms of the dynamic load and the structural natural period, of which effects were not considered in the previous studies. Least square curve fitting equations are presented for describing those normalized response spectrum and optimal non-dimensional friction forces are obtained for controlling the peak displacement and absolute acceleration of the structure based on the derivative of the curve fitted design spectrum.

  • PDF

Response Spectra of Structure Installed Frictional Damping System (마찰형 감쇠를 갖는 구조물의 응답 스펙트럼)

  • Park, Ji-Hun;Youn, Kyung-Jo;Min, Kyung-Won;Lee, Sang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.88-94
    • /
    • 2007
  • Structures with additional frictional damping system have strong nonlinearity that the dynamic behavior is highly affected by the relative magnitude between frictional force and excitation load. In this study, normalized response spectra of the structures with non-dimensional friction force are obtained through nonlinear time history analyses of the mass-normalized single degree of freedom systems using 20 ground motion data recorded on rock site. The variation of the control performance of frictional damping system is investigated in terms of the dynamic load and the structural natural period, of which effects were not considered in the previous studies. Least square curve fitting equations are presented for describing those normalized response spectrum and optimal non-dimensional friction forces are obtained for controlling the peak displacement and absolute acceleration of the structure based on the derivative of the curve-fitted design spectrum.

Elastic Horizontal Response of a Structure to Bedrock Earthquake Considering the Nonlinearity of the Soil Layer (지반의 비선형성을 고려한 암반지진에 의한 구조물의 수평방향 탄성거동)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.53-62
    • /
    • 2002
  • Site soil condition affects significantly on the seismic response of a structure and is a critical factor for the performance based seismic design of a structure. In this paper, the effects of nonlinear soil properties on the elastic response spectra of a structure including the nonlinearity of a soil due to the earthquake excitation is investigated using one step finite element approach for the entire soil structure system and approximate linear iterative procedure to simulate the nonlinear soil behavior with the Ramberg-Osgood soil model. Studies were carried out for a linear SDOF system of a variable period with and without a pile group for the 1940 CI Centro earthquake recorded on ground rather than rock. The study results showed clearly that the effect of the nonlinear behavior of soft soil is very important on the elastic seismic response of a structure suggesting the necessity of the performance based seismic design.

Dynamic Analysis of Effect of Number of Balls on Rotor-Bearing System

  • Hwang, Pyung;Nguyen, Van Trang
    • Tribology and Lubricants
    • /
    • v.29 no.4
    • /
    • pp.248-254
    • /
    • 2013
  • This paper presents a numerical model for investigating the structural dynamic response of an unbalanced rotor system supported on deep groove ball bearings. The aim of this work is to develop a numerical model for investigating the effect of the number of balls on the dynamic characteristics of the rotor ball bearing system. The fourth-order Runge-Kutta numerical integration technique has been applied. The results are presented in the form of time displacement responses and frequency spectra. The analysis demonstrates that the model can be used as a tool for predicting the nonlinear dynamic behavior of the rotor ball bearing system under different operating conditions. Moreover, the study may contribute to a further understanding of the nonlinear dynamics of rotor bearing systems.

Gaussian Kernel Smoothing of Explicit Transient Responses for Drop-Impact Analysis (낙하 충격 해석을 위한 명시법 과도응답의 가우스커널 평활화 기법)

  • Park, Moon-Shik;Kang, Bong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.289-297
    • /
    • 2011
  • The explicit finite element method is an essential tool for solving large problems with severe nonlinear characteristics, but its results can be difficult to interpret. In particular, it can be impossible to evaluate its acceleration responses because of severe discontinuity, extreme noise or aliasing. We suggest a new post-processing method for transient responses and their response spectra. We propose smoothing methods using a Gaussian kernel without in depth knowledge of the complex frequency characteristics; such methods are successfully used in the filtering of digital signals. This smoothing can be done by measuring the velocity results and monitoring the response spectra. Gaussian kernel smoothing gives a better smoothness and representation of the peak values than other approaches do. The floor response spectra can be derived using smoothed accelerations for the design.

Linear and Nonlinear Optical Properties of Vanadium Pentoxide Films Prepared by Pulsed-Laser Deposition

  • Cui, Liqi;Wang, Ruiteng;Wang, Weitian
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.382-385
    • /
    • 2021
  • Well-crystallized vanadium pentoxide V2O5 thin films are fabricated on MgO single crystal substrates by using pulsed-laser deposition technique. The linear optical transmission spectra are measured and found to be in a wavelength range from 300 to 800 nm; the data are used to determine the linear refractive index of the V2O5 films. The value of linear refractive index decreases with increasing wavelength, and the relationship can be well explained by Wemple's theory. The third-order nonlinear optical properties of the films are determined by a single beam z-scan method at a wavelength of 532 nm. The results show that the prepared V2O5 films exhibit a fast third-order nonlinear optical response with nonlinear absorption coefficient and nonlinear refractive index of 2.13 × 10-10 m/W and 2.07 × 10-15 cm2/kW, respectively. The real and imaginary parts of the nonlinear susceptibility are determined to be 3.03 × 10-11 esu and 1.12 × 10-11 esu, respectively. The enhancement of the nonlinear optical properties is discussed.

Site effects and associated structural damage analysis in Kathmandu Valley, Nepal

  • Gautam, Dipendra;Forte, Giovanni;Rodrigues, Hugo
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1013-1032
    • /
    • 2016
  • Several historical earthquakes demonstrated that local amplification and soil nonlinearity are responsible for the uneven damage pattern of the structures and lifelines. On April $25^{th}$ 2015 the Mw7.8 Gorkha earthquake stroke Nepal and neighboring countries, and caused extensive damages throughout Kathmandu valley. In this paper, comparative studies between equivalent-linear and nonlinear seismic site response analyses in five affected strategic locations are performed in order to relate the soil behavior with the observed structural damage. The acceleration response spectra and soil amplification are compared in both approaches and found that the nonlinear analysis better represented the observed damage scenario. Higher values of peak ground acceleration (PGA) and higher spectral acceleration have characterized the intense damage in three study sites and the lower values have also shown agreement with less to insignificant damages in the other two sites. In equivalent linear analysis PGA varies between 0.29 to 0.47 g, meanwhile in case of nonlinear analysis it ranges from 0.17 to 0.46 g. It is verified from both analyses that the PGA map provided by the USGS for the southern part of Kathmandu valley is not properly representative, in contrary of the northern part. Similarly, the peak spectral amplification in case of equivalent linear analysis is estimated to be varying between 2.3 to 3.8, however in case of nonlinear analysis, the variation is observed in between 8.9 to 18.2. Both the equivalent linear and nonlinear analysis have depicted the soil fundamental period as 0.4 and 0.5 sec for the studied locations and subsequent analysis for seismic demands are correlated.

The optimum damping retrofit for cabinet structures of NPP by μ-GA (μ-GA를 이용한 원전 캐비닛구조물의 최적감쇠보강)

  • Lee, Gye-Hee;Ha, Dong-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.1-7
    • /
    • 2005
  • The optimal seismic retrofitting of NPP(Nuclear Power Plant) cabinet structures that contain seismic category 1 relays was studied in this paper. During earthquake event, the failure modes of relays are not appeared in form of structural failure, but are appeared in form of contact chatter of relay. Therefore, the retrofitting of cabinet has to be aimed at the reducing of the structural response, such as acceleration. In this study, the optimal characteristic values of dampers were searched by ${\mu}$-GA (micro-Genetic Algorithm) scheme for several installation patterns. To keep accuracy and efficiency of analysis, the structural models of cabinet were considered as a frame structure. The responses of structure were obtained inform of acceleration response spectra derived from the results of nonlinear time history analysis including damping nonlinearity. The objective function of the optimum procedure was constructed based on the maximum ratio of maximum spectral value and target GERS (General Equipment Ruggedness Spectra). The results show the good improvements of fitness for adequate retrofitting pattern. Especially, the improvements of fitness were remarkable when the values of damping exponents are low.