• Title/Summary/Keyword: nonlinear response analysis

Search Result 1,463, Processing Time 0.034 seconds

Nonlinear Response Characteristics of the ISSC TLP in Time Domain (시간영역에서 ISSC TLP의 비선형 응답 특성)

  • Lee, Chang-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.30-35
    • /
    • 2006
  • In tire presence of incident waves with different frequencies, there are second order sum and difference frequency wave exciting forces due to the nonlinearity of tire incident waves. Although the magnitude of these nonlinear wave forces are small, they act on TLPs at sum and difference frequencies away from those of the incident waves. So, the second order sum and difference frequency waveexciting forces occurring close to tire natural frequencies of TLPs often give greater contributions to high and law frequency resonant responses. Nonlinear motion responses and tension variations in the time domain are analyzed by solving the motion equations with nonlinear wave exciting forces using tire numerical analysismethod. The numerical results of time domain analysis for the nonlinear wave exciting forces on the ISSC TLP in regular waves are compared with the numerical and experimental ones of frequency domain analysis. The results of this comparison confirmed tire validity of the proposed approach.

Earthquake Response Analysis of Soil-Structure Interaction Systems considering Nonlinear Soil Behavior (지반의 비선형을 고려한 지반-구조물 상호작용계의 지진응답해석)

  • 이종세;최준성;임동철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.361-368
    • /
    • 2000
  • This paper demonstrates how nonlinear soil behavior in a soil-structure interaction system can be realistically incorporated by using a hybrid method in a nonlinear time-domain analysis. The hybrid method employs a general-purpose nonlinear finite element program coupled with a linear SSI program for the unbounded layered soil medium In order to verify the validity and applicability of the hybrid method, nonlinear earthquake response analyses are carried out for the Hualien free-field problem, in which the ground and underground accelerations were measured during several earthquake events, and for a 2-D subway station. It is found that the nonlinear earthquake responses predicted for the Hualien free-field using the hybrid method compare very well with the observed responses whereas the subway station example gives reasonable results.

  • PDF

Probability Distribution of Displacement Response of Structures with Friction dampers Excited by Earthquake Loads Generated Using Kanai-Tajimi Filter (Kanai-Tajimi 필터 인공지진 가진된 마찰형 감쇠를 갖는 구조물의 변위 응답 확률분포)

  • Youn, Kyung-Jo;Park, Ji-Hun;Min, Kyung-Won;Lee, Sang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.623-628
    • /
    • 2007
  • The accurate peak response estimation of a seismically excited structure with frictional damping system(FDS) is very difficult since the structure with FDS shows nonlinear behavior dependent on the structural period, loading characteristics, and relative magnitude between the frictional force and the excitation load. Previous studies have estimated that by replacing a nonlinear system with an equivalent linear one or by employing the response spectrum obtained based on nonlinear time history and statistical analysis. In the case that an earthquake load is defined with probabilistic characteristics, the corresponding response of the structure with FDS has probabilistic distribution. In this study, nonlinear time history analyses were performed for the structure with FDS subjected to artificial earthquake loads generated using Kanai-Tajimi filter. An equation for the probability density function (PDF) of the displacement response is proposed by adapting the PDF of the normal distribution. Finally, coefficients of the proposed PDF are obtained by regression analysis of the statistical distribution of the time history responses. Finally the correlation between PDFs and statistical response distribution is presented.

Numerical investigation of the hysteretic response analysis and damage assessment of RC column

  • Abdelmounaim Mechaala;Benazouz Chikh;Hakim Bechtoula;Mohand Ould Ouali;Aghiles Nekmouche
    • Advances in Computational Design
    • /
    • v.8 no.2
    • /
    • pp.97-112
    • /
    • 2023
  • The Finite Element (FE) modeling of Reinforced Concrete (RC) under seismic loading has a sensitive impact in terms of getting good contribution compared to experimental results. Several idealized model types for simulating the nonlinear response have been developed based on the plasticity distribution alone the model. The Continuum Models are the most used category of modeling, to understand the seismic behavior of structural elements in terms of their components, cracking patterns, hysteretic response, and failure mechanisms. However, the material modeling, contact and nonlinear analysis strategy are highly complex due to the joint operation of concrete and steel. This paper presents a numerical simulation of a chosen RC column under monotonic and cyclic loading using the FE Abaqus, to assessthe hysteretic response and failure mechanisms in the RC columns, where the perfect bonding option is used for the contact between concrete and steel. While results of the numerical study under cyclic loading compared to experimental tests might be unsuccessful due to the lack of bond-slip modeling. The monotonic loading shows a good estimation of the envelope response and deformation components. In addition, this work further demonstrates the advantage and efficiency of the damage distributions since the obtained damage distributions fit the expected results.

Passive suppression of helicopter ground resonance instability by means of a strongly nonlinear absorber

  • Bergeot, Baptiste;Bellizzi, Sergio;Cochelin, Bruno
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.271-298
    • /
    • 2016
  • In this paper, we study a problem of passive suppression of helicopter Ground Resonance (GR) using a single degree freedom Nonlinear Energy Sink (NES), GR is a dynamic instability involving the coupling of the blades motion in the rotational plane (i.e. the lag motion) and the helicopter fuselage motion. A reduced linear system reproducing GR instability is used. It is obtained using successively Coleman transformation and binormal transformation. The analysis of the steadystate responses of this model is performed when a NES is attached on the helicopter fuselage. The NES involves an essential cubic restoring force and a linear damping force. The analysis is achieved applying complexification-averaging method. The resulting slow-flow model is finally analyzed using multiple scale approach. Four steady-state responses corresponding to complete suppression, partial suppression through strongly modulated response, partial suppression through periodic response and no suppression of the GR are highlighted. An algorithm based on simple criterions is developed to predict these steady-state response regimes. Numerical simulations of the complete system confirm this analysis of the slow-flow dynamics. A parametric analysis of the influence of the NES damping coefficient and the rotor speed on the response regime is finally proposed.

Direct integration method for stochastic finite element analysis of nonlinear dynamic response

  • Zhang, S.W.;Ellingwood, B.;Corotis, R.;Zhang, Jun
    • Structural Engineering and Mechanics
    • /
    • v.3 no.3
    • /
    • pp.273-287
    • /
    • 1995
  • Stochastic response of systems to random excitation can be estimated by direct integration methods in the time domain such as the stochastic central difference method (SCDM). In this paper, the SCDM is applied to compute the variance and covariance in response of linear and nonlinear structures subjected to random excitation. The accuracy of the SCDM is assessed using two-DOF systems with both deterministic and random material properties excited by white noise. For the former case, closed-form solutions can be obtained. Numerical results also are presented for a simply supported geometrically nonlinear beam. The stiffness of this beam is modeled as a random field, and the beam is idealized by the stochastic finite element method. A perturbation technique is applied to formulate the equations of motion of the system, and the dynamic structural response statistics are obtained in a time domain analysis. The effect of variations in structural parameters and the numerical stability of the SCDM also are examined.

Response of lap splice of reinforcing bars confined by FRP wrapping: application to nonlinear analysis of RC column

  • Pimanmas, Amorn;Thai, Dam Xuan
    • Structural Engineering and Mechanics
    • /
    • v.37 no.1
    • /
    • pp.111-129
    • /
    • 2011
  • This paper presents a nonlinear analysis of reinforced concrete column with lap splice confined by FRP wrapping in the critical hinging zone. The steel stress-slip model derived from the tri-uniform bond stress model presented in the companion paper is included in the nonlinear frame analysis to simulate the response of reinforced concrete columns subjected to cyclic displacement reversals. The nonlinear modeling is based on a fiber discretization of an RC column section. Each fiber is modeled as either nonlinear concrete or steel spring, whose load-deformation characteristics are calculated from the section of fiber and material properties. The steel spring that models the reinforcing bars consists of three sub-springs, i.e., steel bar sub-spring, lap splice spring, and anchorage bond-slip spring connected in series from top to bottom. By combining the steel stress versus slip of the lap splice, the stress-deformation of steel bar and the steel stress-slip of bars anchored into the footing, the nonlinear steel spring model is derived. The analytical responses are found to be close to experimental ones. The analysis without lap splice springs included may result in an erroneous overestimation in the strength and ductility of columns.

Evaluation of Seismic Response for a Suspension Bridge (현수교의 지진응답 평가)

  • 김호경;유동호;주석범
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.57-63
    • /
    • 2003
  • A comparative study was performed for a suspension bridge to grasp the possible differences in seismic responses evaluated by several analytical methods. The items mainly investigated are the linear vs. nonlinear response, the response spectrum method vs. the linear dynamic analysis method, and the damping ratio and it's implementation into analysis procedures. According to the numerical example, it is found that the seismic responses are considerably affected by the damping-related parameters even though slight differences are shown depending on the response quantities and the exciting directions. On the other hand, it is also confirmed that the seismic responses are less affected by the analysis method-related parameters such as the response spectrum method vs. the linear dynamic analysis method, and the linear and nonlinear analysis method. The response spectrum method is expected to give conservative results for the examined bridge, provided that the design response spectrum in the Korean Highway Design Specification is modified according to the proper damping ratio.

Seismic response estimation of steel plate shear walls using nonlinear static methods

  • Dhar, Moon Moon;Bhowmick, Anjan K.
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.777-799
    • /
    • 2016
  • One of the major components for performance based seismic design is accurate estimation of critical seismic demand parameters. While nonlinear seismic analysis is the most appropriate analysis method for estimation of seismic demand parameters, this method is very time consuming and complex. Single mode pushover analysis method, N2 method and multi-mode pushover analysis method, modal pushover analysis (MPA) are two nonlinear static methods that have recently been used for seismic performance evaluation of few lateral load-resisting systems. This paper further investigates the applicability of N2 and MPA methods for estimating the seismic demands of ductile unstiffened steel plate shear walls (SPSWs). Three different unstiffened SPSWs (4-, 8-, and 15-storey) designed according to capacity design approach were analysed under artificial and real ground motions for Vancouver. A comparison of seismic response quantities such as, height-wise distribution of floor displacements, storey drifts estimated using N2 and MPA methods with more accurate nonlinear seismic analysis indicates that both N2 and MPA procedures can reasonably estimates the peak top displacements for low-rise SPSW buildings. In addition, MPA procedure provides better predictions of inter-storey drifts for taller SPSW. The MPA procedure has been extended to provide better estimate of base shear of SPSW.

Effects of damping ratio on dynamic increase factor in progressive collapse

  • Mashhadi, Javad;Saffari, Hamed
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.677-690
    • /
    • 2016
  • In this paper, the effect of damping ratio on nonlinear dynamic analysis response and dynamic increase factor (DIF) in nonlinear static analysis of structures against column removal are investigated and a modified empirical DIF is presented. To this end, series of low and mid-rise moment frame structures with different span lengths and number of storeys are designed and the effect of damping ratio in DIF is investigated, performing several nonlinear static and dynamic analyses. For each damping ratio, a nonlinear dynamic analysis and a step by step nonlinear static analysis are carried out and the modified empirical DIF formulas are derived. The results of the analysis reveal that DIF is decreased with increasing damping ratio. Finally, an empirical formula is recommended that relates to damping ratio. Therefore, the new modified DIF can be used with nonlinear static analysis instead of nonlinear dynamic analysis to assess the progressive collapse potential of moment frame buildings with different damping ratios.