• 제목/요약/키워드: nonlinear numerical bridge model

검색결과 83건 처리시간 0.018초

Nonlinear response of the pile group foundation for lateral loads using pushover analysis

  • Zhang, Yongliang;Chen, Xingchong;Zhang, Xiyin;Ding, Mingbo;Wang, Yi;Liu, Zhengnan
    • Earthquakes and Structures
    • /
    • 제19권4호
    • /
    • pp.273-286
    • /
    • 2020
  • The pile group foundation is widely used for gravity pier of high-speed railway bridges in China. If a moderate or strong earthquake occurs, the pile-surrounding soil will exhibit obvious nonlinearity and significant pile group effect. In this study, an improved pushover analysis model for the pile group foundation with consideration of pile group effect is presented and validated by the quasi-static test. The improved model uses simplified springs to simulate the soil lateral resistance, side friction and tip resistance. PM (axial load-bending moment) plastic hinge model is introduced to simulate the impact of the axial force changing of pile group on their elastic-plastic characteristics. The pile group effect is considered in stress-stain relations of the lateral soil resistance with a reduction factor. The influence factors on nonlinear characteristics and plastic hinge distribution of the pile group foundation are discussed, including the pier height, longitudinal reinforcement ratio and stirrup ratio of the pile, and soil mechanical parameters. Furthermore, the displacement ductility factor, resistance increase factor and yielding stiffness ratio are provided to evaluate the seismic performance of soil-pile system. A case study for the pile group foundation of a railway simply supported beam bridge with a 32 m-span is conducted by numerical analysis. It is shown that the ultimate lateral force of pile group is not determined by the yielding force of the single one in these piles. Therefore, the pile group effect is essential for the seismic performance evaluation of the railway bridge with pile group foundation.

철근콘크리트 교각의 지진손상 평가 I : 이론 및 정식화 (Evaluation of Seismic Damage for RC Bridge Piers I : Theory and Formulation)

  • 김태훈;김운학;신현목
    • 한국지진공학회논문집
    • /
    • 제6권3호
    • /
    • pp.31-40
    • /
    • 2002
  • 이 연구는 철근콘크리트 교각의 지진응답을 파악하고 합리적이면서 경제적인 내진설계기준의 개발을 위한 자료를 제공하는데 그 목적이 있다. 정확하고 올바른 지진손상 평가를 위하여 비선형 유한요소해석 프로그램을 사용하였다. 사용된 프로그램은 철근콘크리트 구조물의 해석을 위한 RCAHEST이다. 재료적 비선형성에 대해서는 균열콘크리트에 대한 인장, 압축, 전단모델과 콘크리트 속에 있는 철근모델을 조합하여 고려하였다. 이에 대한 콘크리트의 균열모델로서는 분산균열모델을 사용하였다. 두께가 서로 다른 부재간의 접합부에서 단면강성이 급변하기 때문에 생기는 국소적인 불연속변형을 고려하기 위한 경계면요소를 도입하였다. 또한, 같은 변위진폭에 있어서의 하중재하 회수에 의한 효과를 고려하였다. 연계논문에서는 철근콘크리트 교각의 지진손상 평가를 위해 제안한 해석기법을 신뢰성 있는 연구자의 실험결과와 비교하여 그 타당성을 검증하였다.

An improved pushover analysis procedure for multi-mode seismic performance evaluation of bridges : (1) Introduction to numerical model

  • Kwak, Hyo-Gyoung;Shin, Dong-Kyu
    • Structural Engineering and Mechanics
    • /
    • 제33권2호
    • /
    • pp.215-238
    • /
    • 2009
  • This paper introduces an improved modal pushover analysis (IMPA) which can effectively evaluate the seismic response of multi-span continuous bridge structures on the basis of modal pushover analysis (MPA). Differently from previous modal pushover analyses which cause the numerical unstability because of the occurrence of reversed relation between the pushover load and displacement, the proposed method eliminates this numerical instability and, in advance the coupling effects induced from the direct application of modal decomposition by introducing an identical stiffness ratio for each dynamic mode at the post-yielding stage together with an approximate elastic deformation. In addition to these two introductions, the use of an effective seismic load, calculated from the modal spatial force and applied as the distributed load, makes it possible to predict the dynamic responses of all bridge structures through a simpler analysis procedure than those in conventional modal pushover analyses. Finally, in order to establish validity and applicability of the proposed method, correlation studies between a rigorous nonlinear time history analysis and the proposed method were conducted for multi-span continuous bridges.

시공단계가 고려된 스트레스 리본 교량의 해석 모델 (Analysis Model of the Stress Ribbon Bridge considering the Construction Stage)

  • 윤경민;김기동;이진옥;임남형
    • 한국산학기술학회논문지
    • /
    • 제15권11호
    • /
    • pp.6898-6905
    • /
    • 2014
  • 스트레스 리본 교량(Stress Ribbon Bridge)이란 두께가 얇은 상부구조(바닥판)가 특정한 현수 형태(catenary type)로 유지되고 긴장된 바닥판 (Post-tensioned deck)이 하중에 의해 역 아치(Reverse arch) 거동을 보이는 PSC 구조물이다. 현재 스트레스 리본 교량의 경우 국외에서 자연파괴를 최소화 하고 아름다운 구조로 인식되어 차도교, 보도교 등에 활발하게 이용되고 있으나 국내에서는 이와 관련된 연구가 매우 미흡한 실정이다. 본 연구에서 시공단계가 고려된 스트레스 리본교량의 비선형, 시간의존적 해석이 고려된 모델을 정립하는데 목표가 있다. 정립된 모델을 이용하여 시공단계에 따른 단면력을 이론에 의한 수치와 비교하여 그 타당성을 입증하였으며, 시공단계에 따른 교량의 거동을 분석하였다.

프리스트레스트 콘크리트 거더 일체식 교량의 교대 거동 해석과 예측 (Analysis and Prediction for Abutment Behavior of Prestressed Concrete Girder Integral Abutment Bridges)

  • 김우석
    • 콘크리트학회논문집
    • /
    • 제23권5호
    • /
    • pp.667-674
    • /
    • 2011
  • 이 연구는 교량의 생애 동안의 온도 변화와 콘크리트의 시간 의존 영향을 고려하여 PSC 거더 일체식 교량의 해석 방법과 교대의 변위를 예측하는 모델 개발에 관한 것이다. 비선형 수치 해석 모델은 지반-구조물의 상호작용을 고려하며, 재료의 비선형 또한 고려되었다. 개발된 수치 해석 모델을 이용하여 총 243가지의 경우에 대하여 변수 연구를 하였다. 고려된 변수는 (1) 열팽창 계수, (2) 교량 길이, (3) 뒤채움재의 높이, (4) 뒤채움재의 강성, 그리고 (5) 말뚝-지반 강성이다. 변수 연구의 결과는 열팽창 계수, 교량 길이, 말뚝-지반의 강성이 지배적인 영향을 나타내는 것으로 드러났다. 또한, 교량의 길이는 교대의 윗부분의 변위에 지배적인 영향을 미치며 자유팽창 수축과 유사하였다. 하부의 변위에는 다른 변수들의 영향으로 추정이 쉽지 않았다. 개발된 교대의 변위 추정 모델은 기본 설계시에 사용될 수 있을 것이다.

Deflection calculation method on GFRP-concrete-steel composite beam

  • Tong, Zhaojie;Song, Xiaodong;Huang, Qiao
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.595-606
    • /
    • 2018
  • A calculation method was presented to calculate the deflection of GFRP-concrete-steel beams with full or partial shear connections. First, the sectional analysis method was improved by considering concrete nonlinearity and shear connection stiffness variation along the beam direction. Then the equivalent slip strain was used to take into consideration of variable cross-sections. Experiments and nonlinear finite element analysis were performed to validate the calculation method. The experimental results showed the deflection of composite beams could be accurately predicted by using the theoretical model or the finite element simulation. Furthermore, more finite element models were established to verify the accuracy of the theoretical model, which included different GFRP plates and different numbers of shear connectors. The theoretical results agreed well with the numerical results. In addition, parametric studies using theoretical method were also performed to find out the effect of parameters on the deflection. Based on the parametric studies, a simplified calculation formula of GFRP-concrete-steel composite beam was exhibited. In general, the calculation method could provide a more accurate theoretical result without complex finite element simulation, and serve for the further study of continuous GFRP-concrete-steel composite beams.

Numerical calculation method for response of friction pendulum system when XY shear keys are sheared asynchronously

  • Wei, Biao;Fu, Yunji;Jiang, Lizhong;Li, Shanshan
    • Structural Engineering and Mechanics
    • /
    • 제81권5호
    • /
    • pp.591-606
    • /
    • 2022
  • When the friction pendulum system and shear keys work together to resist the ground motion, which inclined inputs (non 45°) to the bridge structure, the shear keys in XY direction will be sheared asynchronously, endowed the friction pendulum system with a violent curvilinear motion on the sliding surface during earthquakes. In view of this situation, firstly, this paper abandons the equivalent linearization model of friction and constructs a Spring-Coulomb friction plane isolation system with XY shear keys, and then makes a detailed mechanical analysis of the movement process of friction pendulum system, next, this paper establishes the mathematical model of structural time history response calculation by using the step-by-step integration method, finally, it compiles the corresponding computer program to realize the numerical calculation. The results show that the calculation method in this paper takes advantage of the characteristic that the friction force is always µmg, and creatively uses the "circle making method" to express the change process of the friction force and resultant force of the friction pendulum system in any calculation time step, which can effectively solve the temporal nonlinear action of the plane friction; Compared with the response obtained by the calculation method in this paper, the peak values of acceleration response and displacement response calculated by the unidirectional calculation model, which used in the traditional research of the friction pendulum system, are smaller, so the unidirectional calculation model is not safe.

Analytical model of isolated bridges considering soil-pile-structure interaction for moderate earthquakes

  • Mohammad Shamsi;Ehsan Moshtagh;Amir H. Vakili
    • Geomechanics and Engineering
    • /
    • 제34권5호
    • /
    • pp.529-545
    • /
    • 2023
  • The coupled soil-pile-structure seismic response is recently in the spotlight of researchers because of its extensive applications in the different fields of engineering such as bridges, offshore platforms, wind turbines, and buildings. In this paper, a simple analytical model is developed to evaluate the dynamic performance of seismically isolated bridges considering triple interactions of soil, piles, and bridges simultaneously. Novel expressions are proposed to present the dynamic behavior of pile groups in inhomogeneous soils with various shear modulus along with depth. Both cohesive and cohesionless soil deposits can be simulated by this analytical model with a generalized function of varied shear modulus along the soil depth belonging to an inhomogeneous stratum. The methodology is discussed in detail and validated by rigorous dynamic solution of 3D continuum modeling, and time history analysis of centrifuge tests. The proposed analytical model accuracy is guaranteed by the acceptable agreement between the experimental/numerical and analytical results. A comparison of the proposed linear model results with nonlinear centrifuge tests showed that during moderate (frequent) earthquakes the relative differences in responses of the superstructure and the pile cap can be ignored. However, during strong excitations, the response calculated in the linear time history analysis is always lower than the real conditions with the nonlinear behavior of the soil-pile-bridge system. The current simple and efficient method provides the accuracy and the least computational costs in comparison to the full three-dimensional analyses.

Numerical study of steel box girder bridge diaphragms

  • Maleki, Shervin;Mohammadinia, Pantea;Dolati, Abouzar
    • Earthquakes and Structures
    • /
    • 제11권4호
    • /
    • pp.681-699
    • /
    • 2016
  • Steel box girders have two webs and two flanges on top that are usually connected with shear connectors to the concrete deck and are also known as tub girders. The end diaphragms of such bridges comprise of a stiffened steel plate welded to the inside of the girder at each end. The diaphragms play a major role in transferring vertical and lateral loads to the bearings and substructure. A review of literature shows that the cyclic behavior of diaphragms under earthquake loading has not been studied previously. This paper uses a nonlinear finite element model to study the behavior of the end diaphragms under gravity and seismic loads. Different bearing device and stiffener configurations have been considered. Affected areas of the diaphragm are distinguished.

Comparison of Seismic Retrofit Efficiencies of Base Isolation Systems for Existing Bridges

  • 조효남;엄원석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.81-86
    • /
    • 2000
  • In recent modern protective systems have been introduced to reduce the vulnerability of bridges to seismic events. These protective systems include base isolation devices of different types, damping devices and active control devices. The objective of this study is to analytically evaluate the efficiency of a seismic retrofit scheme using base isolation systems, such as lead rubber bearings and sliding isolators. In this study, a triaxial model was used, which is capable of accurately developing the behavior of sliding isolators including the influence of the changing vertical force and velocity on the friction coefficients. Seismic response analyses of the bridge before and after retrofit were carried out by using a three-dimensional nonlinear seismic analysis program, IDARC-BRIDGE. To evaluate the efficiency of a retrofit scheme using triaxial isolators, a comparative study of performances of above two base isolation systems was conducted, and the numerical results show that the triaxial isolation solution can effectively reduce the sheat forces at the piers for the vertical ground motion.

  • PDF