• Title/Summary/Keyword: nonlinear model order reduction

Search Result 45, Processing Time 0.039 seconds

Analysis and Measurement of Current Harmonics Due to Non-linear Load in Low Voltage System (저압 시스템에서 비선형 부하의 사용에 따른 전류 고조파 해석 및 측정)

  • Kim, Jong-Gyeom;Lee, Eun-Ung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.12
    • /
    • pp.601-608
    • /
    • 2001
  • The ever increasing density of adjustable speed drives(ASD) device with non-linear operating characteristics has been to put tremendous harmonic stress on end user's electrical application. All ASD controllers which employ solid state power devices cause harmonic currents in the source side line. This paper describes harmonic problems for use of ASD. In order to investigate the effect of harmonics caused by using of nonlinear load at the low voltage system, we fixed up simple load model and measured the voltage and current waveforms. Measurement results show that additional operation of linear load at the parallel bus with nonlinear load such as ASD is helpful to the reduction of harmonic influence.

  • PDF

Analysis of harmonics current using non-linear load at low voltage system (저압 시스템에서 비선형 부하의 사용에 따른 고조파 전류 해석)

  • Kim, Jong-Gyeum;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.13-16
    • /
    • 2001
  • This paper describes the problems associated with the use of PWM ASDs to drive induction motors. A major effect of harmonic voltages and currents in induction motors is increased heating due to iron and copper losses at harmonic frequencies. The harmonic components thus affect the motor efficiency, and can also affect the torque developed. In order to investigate the effect of harmonics which is caused by using of nonlinear load at the low voltage system, we fixed up simple load model and measured the voltage and current. Measurement. results show that additional operation of linear load at the parallel bus in using nonlinear load such as ASD is helpful to the reduction of harmonic current.

  • PDF

Correction of King-Moe Type V Scoliosis with Optimization Method in a FE Model (King-Moe Type V 형태의 척추측만증 유한 요소 모델에서 최적화 기법을 적용한 교정 방법)

  • 김영은;손창규;박경열;정지호;최형연
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.701-704
    • /
    • 2003
  • Scoliosis is a complex musculoskeletal dieses requiring 3-D treatment with surgical instrumentation. Conventional corrective surgery for scoliosis was done based on empirical knowledge without information of the optimum position and operative procedure. Frequently, post operative change of rib hump increase and shoulder level imbalance caused serious problems in the view of cosmetics. To investigate the effect of correction surgery, a reconstructed 3-D finite element model for King-Moe type V was developed. Vertebrae, clavicle and other bony element were represented using rigid bodies. Kinematic joints and nonlinear bar elements used to represent the intervertebral disc and ligaments according to reported experimental data. With this model, optimization technique was also applied in order to define the optimal magnitudes of correction. The optimization procedure corrected the scoliotic deformities by reducing the objective function by more than 94%. with an associated reduction of the scoliotic descriptors mainly on the frontal thoracic curve.

  • PDF

Nonlinear Dynamic Analysis of Space Truss by Using Multistage Homotopy Perturbation Method (시분할구간 호모토피 섭동법을 이용한 공간 트러스의 비선형 동적 해석)

  • Shon, Su-Deok;Ha, Jun-Hong;Lee, Seung-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.879-888
    • /
    • 2012
  • This study aims to apply multistage homotopy perturbation method(MHPM) to space truss composed of discrete members to obtain a semi-analytical solution. For the purpose of this research, a nonlinear governing equation of the structures is formulated in consideration of geometrical nonlinearity, and homotopy equation is derived. The result of carrying out dynamic analysis on a simple model is compared to a numerical method of 4th order Runge-Kutta method(RK4), and the dynamic response by MHPM concurs with the numerical result. Besides, the displacement response and attractor in the phase space is able to delineate dynamic snapping properties under step excitations and the responses of damped system are reflected well the reduction effect of the displacement.

Comparing fuzzy type-1 and -2 in semi-active control with TMD considering uncertainties

  • Ramezani, Meysam;Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.155-171
    • /
    • 2019
  • In this study, Semi-active Tuned Mass Dampers (STMDs) are employed in order to cover the prevailing uncertainties and promote the efficiency of the Tuned Mass Dampers (TMDs) to mitigate undesirable structural vibrations. The damping ratio is determined using type-1 and type-2 Fuzzy Logic Controllers (T1 and T2 FLC) based on the response of the structure. In order to increase the efficiency of the FLC, the output membership functions are optimized using genetic algorithm. The results show that the proposed FLC can reduce the sensitivity of STMD to excitation records. The obtained results indicate the best operation for T1 FLC among the other control systems when the uncertainties are neglected. According to the irrefutable uncertainties, three supplies for these uncertainties such as time delay, sensors measurement noises and the differences between real and software model, are investigated. Considering these uncertainties, the efficiencies of T1 FLC, ground-hook velocity-based, displacement-based and TMD reduce significantly. The reduction rates for these algorithms are 12.66%, 26.43%, 20.98% and 21.77%, respectively. However, due to nonlinear behavior and considering a range of uncertainties in membership functions, T2 FLC with 7.2% reduction has robust performance against uncertainties compared to other controlling systems. Therefore, it can be used in actual applications more confidently.

A Study on Size Effect for Compressive Strength of Concrete considering Strength Level (강도수준에 따른 콘크리트 압축강도의 크기효과에 관한 연구)

  • 김희성;진치섭;어석홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.239-244
    • /
    • 1999
  • The reduction phenomena of the compressive strength of concrete with respect to the size of specimens have been extensively investigated. However, adequate analysis technique have not been developed until now. Existing researches have shown that the larger member size, the smaller the strength. This indicated the necessity of nonlinear fracture mechanics theory in order to analyze the fracture behaviors of concrete. The are some models that predict the size effect of compressive strength of cylindrical specimens. Theses equations, however, are developed not considering the difference of fracturing mechanism which depends on both geometry of specimen and the strength level of concrete. In this paper, a model to predict compressive strength of cylindrical concrete specimens with respect to diameters, h/d ratios, and the strength level of concrete, is suggested. For this purpose, theoretical and statistical analyses are conducted. Experimental constants used in the model of new size effect are formulated in terms of strength levels of concrete based on existing experimental data.

  • PDF

Experimental Study of Structural Behavior of Two-Way Beam String Structures (양방향 하중 저항 언더 텐션 시스템의 구조 성능에 대한 실험 연구)

  • Seo, Minhee;Lee, Seunghye;Baek, Kiyoul;Jeong, Jinwoo;Kim, Sun-Myung;Lee, Jaehong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.93-103
    • /
    • 2018
  • This study showed that experimental study of inelastic nonlinear behavior of two-way beam string structures. General large span structures consisting of beam members have large moment and long cross section of area. In order to decrease these excessive moment and deflection, the two-way beam string structures composed of H-Beam, strut, and cable elements were proposed. In the two-way string beam, the cable with the prestress improves force distribution of some weight reduction. Two systems made of structural steel and cables were tested. The nonlinear behaviour of the two-way beam string structures studied by using finite element model and compared to experimental results. The displacement of the LVDT in the center of the beam correspond with the ABAQUS results. 2,200MPa cable can afford to bear breaking load than 1,860MPa cable. The two-way beam string structures is correlated to the finite element model and the experimental results. In consequence, It showed that the system with two-way cables exhibits much better structural performances than H-Beam structures and beam with cable.

Development and Assessment for Resilient Modulus Prediction Model of Railroad Trackbeds Based on Modulus Reduction Curve (탄성계수 감소곡선에 근거한 철도노반의 회복탄성계수 모델 개발 및 평가)

  • Park, Chul Soo;Hwang, Seon Keun;Choi, Chan Yong;Mok, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2C
    • /
    • pp.71-79
    • /
    • 2009
  • This study is to develope the resilient modulus prediction model, which is the function of mean effective principal stress and axial strain, for three types of railroad trackbed materials such as crushed stone, weathered granite soil, and crushed-rock soil mixture. The model consists of the maximum Young's modulus and nonlinear values for higher strain, analogous to dynamic shear modulus. The maximum value is modeled by model parameters, $A_E$ and the power of mean effective principal stress, $n_E$. The nonlinear portion is represented by modified hyperbolic model, with the model parameters of reference strain, ${\varepsilon}_r$ and curvature coefficient, a. To assess the performance of the prediction models proposed herein, the elastic response of a test trackbed near PyeongTaek, Korea, was evaluated using a 3-D elastic multilayer computer program (GEOTRACK). The results were compared with measured elastic vertical displacement during the passages of freight and passenger trains at two locations, whose sub-ballasts were crushed stone and weathered granite soil, respectively. The calculated vertical displacements of the sub-ballasts are within the order of 0.6mm, and agree well with measured values. The prediction models are thus concluded to work properly in the preliminary investigation.

A substructure formulation for the earthquake -induced nonlinear structural pounding problem

  • Shi, Jianye;Bamer, Franz;Markert, Bernd
    • Earthquakes and Structures
    • /
    • v.17 no.1
    • /
    • pp.101-113
    • /
    • 2019
  • Earthquake-induced pounding is one of the major reasons for structural failure in earthquake prone cities. An accurate description of the pounding phenomenon of two buildings requires the consideration of systems with a large number of degrees of freedom including adequate contact impact formulations. In this paper, firstly, a node to surface formulation for the realization of state-of-the-art pounding models for structural beam elements is presented. Secondly, a hierarchical substructure technique is introduced, which is adapted to the structural pounding problem. The numerical accuracy and efficiency of the method, especially for the contact forces, are verified on an academic example, applying four different impact elements. Error estimations are carried out and compared with the classical modal truncation method. It is demonstrated that the hierarchical substructure method is indeed able to significantly speed up the numeric integration procedure by preserving a required level of accuracy.

Size Effect of Compressive Strength of Concrete for the Cylindrical Specimens Considering Strength Level (강도수준을 고려한 원주형 공시체에 대한 콘크리트 압축강도의 크기효과)

  • Kim, Hee-Sung;Jin, Chi-Sub;Eo, Seok-Hong
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.95-103
    • /
    • 1999
  • The reduction phenomena of concrete compressive strength with the size of specimens have been extensively investigated, but till now the adequate analysis technique is not fixed. The existing research results show that the bigger the member size, the smaller the strength. This means the nonlinear fracture mechanics theory is needed in order to analyze the fracture behaviors of concrete and the size effect. There is a few model equations that is to predict the size effect of compressive strength of standard and non-standard cylindrical specimen. However, theses equations did not considered the difference of fracturing mechanism which depends on the strength level. In this paper, model equations to predict compressive strength of concrete considering the size effect and strength level are suggested. The size effect model suggested in this paper shows good prediction compared with the existing test data of various concrete size and strength level.