• Title/Summary/Keyword: nonlinear method

Search Result 7,877, Processing Time 0.038 seconds

Polycyclic Aromatic Hydrocarbon (PAH) Binding to Dissolved Humic Substances (HS): Size Exclusion Effect

  • Hur, Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.12-19
    • /
    • 2004
  • Binding mechanisms of polycyclic aromatic hydrocarbons (PAHs) with a purified Aldrich humic acid (PAHA) and its ultrafiltration (UF) size fractions were investigated. Organic carbon normalized binding coefficient ($K_oc$) values were estimated by both a conventional Stern-Volmer fluorescence quenching technique and a modified fluorescence quenching method. Pyrene $K_oc$ values depended on PAHA concentration as well as freely dissolved pyrene concentration. Such nonlinear sorption-type behaviors suggested the existence of specific interactions. Smaller molecular size PAH (naphthalene) exhibited higher $K_oc$ value with medium-size PAHA UF fractions whereas larger size PAH (pyrene) had higher extent of binding with larger PAHA UF fractions. The inconsistent observation for naphthalene versus pyrene was well explained by size exclusion effect, one of the previously suggested specific mechanisms for PAH binding. In general, the extent of pyrene binding increased with lower pH likely due to the neutralization of acidic functional groups in HS and the subsequent increase in hydrophobic HS region. However, pyrene $K_oc$ results with a large UF fraction (>100K Da) corroborated the existence of the size exclusion effect as demonstrated by an increase in $K_oc$ values at a certain higher pH range. The size exclusion effect appears to be effective only for the specific conditions (HS size or pH) that render HS hole st겨ctures to fit a target PAH.

Determination of the Optimized Structure of Self-Organizing Map for the Rainfall-Runoff Analysis in Naju (나주지점의 강우-유출 해석을 위한 최적의 SOM 구조 결정)

  • Kim, Yong-Gu;Jin, Young-Hoon;Park, Sung-Chun;Jeong, Choen-Lee
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.10
    • /
    • pp.995-1007
    • /
    • 2008
  • Studies on modeling the rainfall-runoff relationship which shows nonlinear trend strongly use artificial neural networks theory not only for the prediction but also for the characteristics analysis of the data used by pattern classification. For the pattern classification, the results from Self-Organizing Map (SOM) mention that the map size and array for the SOM training have significantly influenced on the SOM performance. Since there is no deterministic method or theoretical equation to determine the number of rows and columns for the map size, hexagonal array is generally used for the map array. Therefore, this study present a determination of the optimized map structure for the rainfall-runoff analysis in Naju station considering the map size and array simultaneously which can represent the classified characterization of rainfall-runoff relationship. The result showed that the map size of 20$\times$16 hexagonal array with 8-clustered patterns was selected as an appropriate map structure for rainfall-runoff analysis in Naju station.

Economies of Scale and Scope In Seoul's Urban Bus Industry (서울 시내버스운송업의 규모 및 범위의 경제성 분석)

  • 김성수;김민정
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.6
    • /
    • pp.89-102
    • /
    • 2001
  • Using a multiproduct translog cost function model, this paper examines the existence or absence of scale and scope economies in Seoul's urban bus industry. The Paper then conceptualizes that the bus firm produces three outputs (city, seat and local bus-kilometers) using low input factors(labor, capital, fuel and maintenance). Using 1996 annual observations for 81 Seoul's bus firms, the equation system consisting of a cost function and three input share equations is estimated with the nonlinear iterative Zellner method. The findings show that the cost function corresponding to a non-homothetic production technology with separability between local bus outputs and inputs adequately represents the structure of cost for Seoul's bus firms, and that the demand lot all input factors is quite inelastic with respect to their own price. On the other hand, nearly all firms experience mild overall economies or scale, but rather marked product-specific economies of scale with respect to all the three outputs. In addition, there appear to be substantial economies or scope associated with the joint production of city and seat bus services, while considerable diseconomies of scope associated with that of city and local bus services. These results indicate that the merger of smaller firms into larger firms with a fleet of approximately 200 buses would result in more cost-efficient bus services.

  • PDF

Capacity Design of Eccentrically Braced Frames through Prediction of Link Overstrength (링크의 초과강도 예측에 의한 편심가새골조의 역량설계)

  • Hong, Yunsu;Yu, Eunjong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.271-278
    • /
    • 2021
  • According to the capacity design of eccentrically braced frames (EBFs), non-dissipative members such as columns, link-exterior beams, and braces must remain within the elastic region when a fully-yielded and strain-hardened link transmits force to them. The current AISC 341 standard suggests a strain-hardening factor (SHF) of 1.25 for a link under capacity design, regardless of its properties. However, all the links in an EBF are not likely to yield simultaneously to the extent to which the overstrength corresponding to 1.25 times their expected strength is attained, especially for high-rise buildings. Considering this phenomenon, a technique to predict the SHF of links at the limit state of the structure is proposed in this paper. The exact prediction of the links' SHF could save structural quantities dramatically while achieving the principle of capacity design. To validate the effectiveness of this technique, SHF values predicted by conducting linear analysis were compared with those evaluated by nonlinear analysis. Furthermore, the maximum demand-to-capacity ratios of the non-dissipative members were calculated to verify whether they would remain elastic at the limit state of the structure. Consequently, EBFs designed by the proposed method showed substantially economical quantities through the exact prediction of the SHFs, and the intention of capacity design was successfully achieved.

Locking horizontal mattress suture as the alternative closure method for scalp lacerations difficult to suture with staple (두피 봉합기로 봉합하기 어려운 두피 열상에 시행한 잠금 수평 매트리스 봉합법의 유용성 관찰 연구)

  • Sah, Seung Woo;Seol, Seunghwan;Lee, Woon Jeong;Woo, Seon Hee;Kim, Dae Hee;Lee, June Young;In, Sangkook;Kim, Bonggyeom
    • Journal of The Korean Society of Emergency Medicine
    • /
    • v.29 no.6
    • /
    • pp.649-655
    • /
    • 2018
  • Objective: This paper reports the possibility of using of a locking horizontal mattress suture technique in repairing lacerations that are difficult to suture with staples. Methods: Data were collected retrospectively over a 6-month period regarding the routine repair of scalp lacerations: those in areas injured by a high energy blunt mechanism, continued to bleed after pressure, nonlinear or damaged skin repaired with a locking horizontal mattress technique, and simple interrupted technique. The effects of the two techniques used to repair scalp lacerations on wound healing, complication rate, and patient satisfaction were examined. The categorical variables are expressed as the number and percent. A Mann-Whitney-Wilcoxon test was used for statistical analysis. A P-value less than 0.05 was considered significant. Results: Thirty-seven consecutive patients with scalp lacerations presented for care. Wound closure was accomplished with the locking horizontal mattress sutures in 40.5% (n=15) (median length, 5.0 cm; interquartile range [IQR], 4.0-7.0 cm). Simple interrupted sutures (median length, 4 cm; IQR, 3.0-5.0 cm) were used in 59.5% (n=22) (P=0.015). The frequency of additional bandage compression (P=0.008), frequency of exudative hemorrhage (P=0.018), and suture mark frequency at suture removal (P=0.047) were significantly lower in the locking horizontal mattress group. Conclusion: The locking horizontal mattress suture, which has the advantage of a horizontal mattress suture, may be one of the ways that can be used alternatively to treat scalp lacerations that difficult to suture with staples.

Image Based Damage Detection Method for Composite Panel With Guided Elastic Wave Technique Part I. Damage Localization Algorithm (복합재 패널에서 유도 탄성파를 이용한 이미지 기반 손상탐지 기법 개발 Part I. 손상위치 탐지 알고리즘)

  • Kim, Changsik;Jeon, Yongun;Park, Jungsun;Cho, Jin Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • In this paper, a new algorithm is proposed to estimate the damage location in the composite panel by extracting the elastic wave signal reflected from the damaged area. The guided elastic wave is generated by a piezoelectric actuator and sensed by a piezoelectric sensor. The proposed algorithm adopts a diagnostic approach. It compares the non-damaged signal with the damaged signal, and extract damage information along with sensor network and lamb wave group velocity estimated by signal correlation. However, it is difficult to clearly distinguish the damage location due to the nonlinear properties of lamb wave and complex information composed of various signals. To overcome this difficulty, the cumulative summation feature vector algorithm(CSFV) and a visualization technique are newly proposed in this paper. CSFV algorithm finds the center position of the damage by converting the signals reflected from the damage to the area of distance at which signals reach, and visualization technique is applied that expresses feature vectors by multiplying damage indexes. Experiments are performed for a composite panel and comparative study with the existing algorithms is carried out. From the results, it is confirmed that the damage location can be detected by the proposed algorithm with more reliable accuracy.

Nonlinear Analysis of Shear Behavior on Pile-Sand Interface Using Ring Shear Tests (링전단시험을 이용한 말뚝 기초-사질지반 간 인터페이스 거동 분석)

  • Jeong, Sang-Seom;Jung, Hyung-Suh;Whittle, Andrew;Kim, Do-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.5
    • /
    • pp.5-17
    • /
    • 2021
  • In this study, the shear behavior between pile-sandy soil interface was quantified based on series of rigorous ring shear test results. Ring shearing test was carried out to observe the shear behavior prior to failure and behavior at residual state between most commonly used pile materials - steel and concrete - and Jumunjin sand. The test was set to clarify the shear behavior under various confinement conditions and soil densities. The test results were converted in to representative friction angles for various test materials. Additional numerical analysis was executed to validate the accuracy of the test results. Based on the test results and the numerical validation, it was found that due to the dilative and contractive nature of sand, its interface behavior can be categorized in to two different types : soils with higher densities tend to show peak shear stress and moves on to residual state, while on the other hand, soils with lower densities tend to show bilinear load-transfer curves along the interface. However, the relative density and the confining stress was found to affect the friction angle only in the small train range, and converges as it progresses to large deformation. This study established a large deformation analysis method which can successfully simulate and predict the large deformation behavior such as ring shear tests. Moreover, the friction angle derived from the ring shear test result and verified by numerical analysis can be applied to numerical analysis and actual design of various pile foundations.

FEA for RC Beams Partially Flexural Reinforced with CFRP Sheets (CFRP 시트로 부분 휨 보강된 철근콘크리트 보의 유한요소해석)

  • Kim, Kun-Soo;Park, Ki-Tae;Kim, Byeong Cheol;Kim, Jaehwan;Jung, Kyu-San
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.9-16
    • /
    • 2020
  • A CFRP sheet has been applied as a structural reinforcement in the field, and various studies are conducted to evaluate the effect of CFRP sheets on reinforced concrete. Although many experiments were performed from previous studies, there are still limitations to analyze structural behaviors with various parameters in experiments directly. This study shows the FEA on structural behaviors of RC beams reinforced with CFRP sheets using ABAQUS software. To simulate debonding failure of CFRP sheets which is a major failure mode of RC beam with CFRP sheets, a cohesive element was applied between the bottom surface of RC beam and CFRP sheets. Both quasi-static method and 2-D symmetric FE model technique were performed to solve nonlinear problems. Results obtained from the FE models show good agreements with experimental results. It was found that reinforcement level of CFRP sheets is closely related to structural behavior of reinforced concrete including maximum strength, initial stiffness and deflection at failure. Also, as over-reinforcement of CFRP sheets could give rise to the brittle failure of RCstructure using CFRP sheets, an appropriate measure should be required when installing CFRP sheets in the structure.

Hysteretic behaviors and calculation model of steel reinforced recycled concrete filled circular steel tube columns

  • Ma, Hui;Zhang, Guoheng;Xin, A.;Bai, Hengyu
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.305-326
    • /
    • 2022
  • To realize the recycling utilization of waste concrete and alleviate the shortage of resources, 11 specimens of steel reinforced recycled concrete (SRRC) filled circular steel tube columns were designed and manufactured in this study, and the cyclic loading tests on the specimens of columns were also carried out respectively. The hysteretic curves, skeleton curves and performance indicators of columns were obtained and analysed in detail. Besides, the finite element model of columns was established through OpenSees software, which considered the adverse effect of recycled coarse aggregate (RA) replacement rates and the constraint effect of circular steel tube on internal RAC. The numerical calculation curves of columns are in good agreement with the experimental curves, which shows that the numerical model is relatively reasonable. On this basis, a series of nonlinear parameters analysis on the hysteretic behaviors of columns were also investigated. The results are as follows: When the replacement rates of RA increases from 0 to 100%, the peak loads of columns decreases by 7.78% and the ductility decreases slightly. With the increase of axial compression ratio, the bearing capacity of columns increases first and then decreases, but the ductility of columns decreases rapidly. Increasing the wall thickness of circular steel tube is very profitable to improve the bearing capacity and ductility of columns. When the section steel ratio increases from 5.54% to 9.99%, although the bearing capacity of columns is improved, it has no obvious contribution to improve the ductility of columns. With the decrease of shear span ratio, the bearing capacity of columns increases obviously, but the ductility decreases, and the failure mode of columns develops into brittle shear failure. Therefore, in the engineering design of columns, the situation of small shear span ratio (i.e., short columns) should be avoided as far as possible. Based on this, the calculation model on the skeleton curves of columns was established by the theoretical analysis and fitting method, so as to determine the main characteristic points in the model. The effectiveness of skeleton curve model is verified by comparing with the test skeleton curves.

Estimation and Validation of the Leaf Areas of Five June-bearing Strawberry (Fragaria × ananassa) Cultivars using Non-destructive Methods (일계성 딸기 5품종의 비파괴적 방법을 사용한 엽면적 추정 및 검증)

  • Jo, Jung Su;Sim, Ha Seon;Jung, Soo Bin;Moon, Yu Hyun;Jo, Won Jun;Woo, Ui Jeong;Kim, Sung Kyeom
    • Journal of Bio-Environment Control
    • /
    • v.31 no.2
    • /
    • pp.98-103
    • /
    • 2022
  • Non-destructive estimation of leaf area is a more efficient and convenient method than leaf excision. Thus, several models predicting leaf area have been developed for various horticultural crops. However, there are limited studies on estimating the leaf area of strawberry plants. In this study, we predicted the leaf areas via nonlinear regression analysis using the leaf lengths and widths of three-compound leaves in five domestic strawberry cultivars ('Arihyang', 'Jukhyang', 'Keumsil', 'Maehyang', and 'Seollhyang'). The coefficient of determination (R2) between the actual and estimated leaf areas varied from 0.923 to 0.973. The R2 value varied for each cultivar; thus, leaf area estimation models must be developed for each cultivar. The leaf areas of the three cultivars 'Jukhyang', 'Seolhyang', and 'Maehyang' could be non-destructively predicted using the model developed in this study, as they had R2 values over 0.96. The cultivars 'Arihyang' and 'Geumsil' had slightly low R2 values, 0.938 and 0.923, respectively. The leaf area estimation model for each cultivar was coded in Python and is provided in this manuscript. The estimation models developed in this study could be used extensively in other strawberry-related studies.