• Title/Summary/Keyword: nonlinear mathematical method

Search Result 550, Processing Time 0.031 seconds

A Study on Balanced Team Formation Method Reflecting Characteristics of Students (학생들의 특성을 반영한 균형적인 팀 편성 방법에 관한 연구)

  • Kim, Jong-hwan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.6
    • /
    • pp.55-65
    • /
    • 2019
  • With the advent of the Fourth Industrial Revolution and changes in the educational environment, team-based assignments are increasing in university classes. Effective team formation in team-based class is an important issue that affects students' satisfaction and the effectiveness of education. However, previous studies mostly focused on post analysis on the results of team formation, which makes it difficult to use them in actual classes. In this paper, we present a mathematical model of how to create a balanced team that reflects students' abilities and other characteristics. Characteristic values for assignment may be scores, such as students' proficiency, binary values such as gender, and multi-values, such as grade or department. This problem is a type of equitable partitioning problem, which takes the form of 0-1 integer programming, and the objective function is linear or nonlinear, depending on how balance is achieved. The basic model or the extended model presented can be applied to the situation where teams are balanced in consideration of various factors in actual class.

Pedagogical Discussion on the concept of Tangent as a Linear Approximation (선형 근사로서의 접선 개념의 교육학적 고찰)

  • Kim, Young-Rock;Lee, Young-Ie;Han, Jong-Min
    • Communications of Mathematical Education
    • /
    • v.23 no.3
    • /
    • pp.625-642
    • /
    • 2009
  • In the school mathematics the concept of tangent is introduced in several steps in suitable contexts. Students are required to reflect and revise their concepts of tangent in order to apply the improved concept to wider range of contexts. In this paper we consider the tangent as the optimal linear approximation to a curve at a given point and make three discussions on pedagogical aspects of it. First, it provides a method of finding roots of real numbers which can be used as an application of tangent. This may help students improve their affective variables such as interest, attitude, motivation about the learning of tangent. Second, this concept reflects the modern point of view of tangent, the linear approximation of nonlinear problems. Third, it gives precise meaning of two tangent lines appearing two sides of a cusp point of a curve.

  • PDF

unifying solution method for logical topology design on wavelength routed optical networks (WDM의 논리망 구성과 파장할당 그리고 트래픽 라우팅을 위한 개선된 통합 해법)

  • 홍성필
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9A
    • /
    • pp.1452-1460
    • /
    • 2000
  • A series of papers in recent literature on logical topology design for wavelength routed optical networks have proposed mathematical models and solution methods unifying logical topology design wavelength assignment and traffic routing. The most recent one is by Krishnaswamy and Sivarajan which is more unifying and complete than the previous models. Especially the mathematical formulation is an integer linear program and hence regarded in readiness for an efficient solution method compared to the previous nonlinear programming models. The solution method in [7] is however elementary one relying on the rounding of linear program relaxation. When the rounding happens to be successful it tends to produce near-optimal solutions. In general there is no such guarantee so that the obtained solution may not satisfy the essential constraints such as logical -path hop-count and even wavelength number constraints. Also the computational efforts for linear program relaxation seems to be too excessive. In this paper we propose an improved and unifying solution method based on the same to be too excessive. In this paper we propose an improved and unifying solution method based on the same model. First its computation is considerably smaller. Second it guarantees the solution satisfies all the constraints. Finally applied the same instances the quality of solution is fairly competitive to the previous near optimal solution.

  • PDF

Numerical Verification of Hybrid Optimization Technique for Finite Element Model Updating (유한요소모델개선을 위한 하이브리드 최적화기법의 수치해석 검증)

  • Jung, Dae-Sung;Kim, Chul-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.19-28
    • /
    • 2006
  • Most conventional model updating methods must use mathematical objective function with experimental modal matrices and analytical system matrices or must use information about the gradient or higher derivatives of modal properties with respect to each updating parameter. Therefore, most conventional methods are not appropriate for complex structural system such as bridge structures due to stability problem in inverse analysis with ill-conditions. Sometimes, moreover, the updated model may have no physical meaning. In this paper, a new FE model updating method based on a hybrid optimization technique using genetic algorithm (GA) and Holder-Mead simplex method (NMS) is proposed. The performance of hybrid optimization technique on the nonlinear problem is demonstrated by the Goldstein-Price function with three local minima and one global minimum. The influence of the objective function is evaluated by the case study of a simulated 10-dof spring-mass model. Through simulated case studies, finally, the objective function is proposed to update mass as well as stiffness at the same time. And so, the proposed hybrid optimization technique is proved to be an efficient method for FE model updating.

CNN-based Automatic Machine Fault Diagnosis Method Using Spectrogram Images (스펙트로그램 이미지를 이용한 CNN 기반 자동화 기계 고장 진단 기법)

  • Kang, Kyung-Won;Lee, Kyeong-Min
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.3
    • /
    • pp.121-126
    • /
    • 2020
  • Sound-based machine fault diagnosis is the automatic detection of abnormal sound in the acoustic emission signals of the machines. Conventional methods of using mathematical models were difficult to diagnose machine failure due to the complexity of the industry machinery system and the existence of nonlinear factors such as noises. Therefore, we want to solve the problem of machine fault diagnosis as a deep learning-based image classification problem. In the paper, we propose a CNN-based automatic machine fault diagnosis method using Spectrogram images. The proposed method uses STFT to effectively extract feature vectors from frequencies generated by machine defects, and the feature vectors detected by STFT were converted into spectrogram images and classified by CNN by machine status. The results show that the proposed method can be effectively used not only to detect defects but also to various automatic diagnosis system based on sound.

Critical buckling analyses of nonlinear FG-CNT reinforced nano-composite beam

  • Zerrouki, Rachid;Karas, Abdelkader;Zidour, Mohamed
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.211-220
    • /
    • 2020
  • This paper investigates the effect of linear and non-linear distribution of carbon nanotube volume fraction in the FG-CNTRC beams on the critical buckling by using higher-order shear deformation theories. Here, the material properties of the CNTRC beams are assumed to be graded in the thickness direction according to a new exponential power law distribution in terms of the carbon nanotube volume fractions. The single-walled carbon nanotube is aligned and distributed in the polymeric matrix with different patterns of reinforcement; the material properties of the CNTRC beams are described by using the rule of mixture. The governing equations are derived through using Hamilton's principle. The Navier solution method is used under the specified boundary conditions for simply supported CNTRC beams. The mathematical models provided in this work are numerically validated by comparison with some available results. New results of critical buckling with the non-linear distribution of CNT volume fraction in different patterns are presented and discussed in detail, and compared with the linear distribution. Several aspects of beam types, CNT volume fraction, exponent degree (n), aspect ratio, etc., are taken into this investigation. It is revealed that the influences of non-linearity distribution in the beam play an important role to improve the mechanical properties, especially in buckling behavior. The results show that the X-Beam configuration is the strongest among all different types of CNTRC beams in supporting the buckling loads.

SOFTWARE LINEAR AND EZPONENTIAL ACELERATION/DECELERTION METHODS FOR INDUSTRIAL ROBOTS AND CNC MACHINE TOOLS

  • Kim, Dong-Il;Song, Jin-Il;Lim, Yong-Gtu;Kim, Sungkwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1904-1909
    • /
    • 1991
  • Software linear and exponential acceleration/deceleration algorithms for control of machine axes of motion in industrial robots and CNC machine tools are proposed. Typical hardware systems used to accelerate and decelerate axes of motion are mathematically analyzed. Discrete-time state equations are derived from the mathematical analyses for the development of software acceleration/deceleration algorithms. Synchronous control method of multiple axes of motion in industrial robots and CNC machine tools is shown to be easily obtained on the basis of the proposed acceleration/deceleration algorithms. The path error analyses are carried out for the case where the software linear and exponential acceleration/deceleration algorithms are applied to a circular interpolator. A motion control system based on a floating point digital signal processor (DSP) TMS 320C30 is developed in order to implement the proposed algorithms. Experimental results demonstrate that the developed algorithms and the motion control system are available for control of multiple axes and nonlinear motion composed of a combination of lines and circles which industrial robots and CNC machine tools require.

  • PDF

Drying Ginseng Slices Using a Combination of Microwave and Far-Infrared Drying Techniques

  • Gong, Yuan Juan;Sui, Ying;Han, Chung Su;Ning, Xiao Feng
    • Journal of Biosystems Engineering
    • /
    • v.41 no.1
    • /
    • pp.34-42
    • /
    • 2016
  • Purpose: This study was performed to improve the drying quality and drying rate of ginseng slices by combining microwave and far-infrared drying techniques. Methods: Based on single-factor experiments and analyses, a quadratic regression orthogonal rotation combination design was adopted to study the effects of the moisture content at the conversion point between the microwave and far-infrared techniques, the ginseng slice thickness and the far-infrared drying temperature on the chip drying time, the surface color difference value, the nutritional composition and the surface shrinkage rate index. Results: Compared to the far-infrared drying alone, the combined microwave and far-infrared drying resulted in an increase in the saponin content of the ginseng slices and reductions in the drying time, surface color difference, and shrinkage rate. Conclusions: We established a mathematical model of the relationships between the surface shrinkage rate index and the experimental factors using the multi-objective nonlinear optimization method to determine the optimal parameter combination, which was confirmed to be the following: microwave and far-infrared moisture contents of 65%, a ginseng slice thickness of 1 mm, and a far-infrared drying temperature of $54^{\circ}C$.

Linear Analysis of Geared System with a Manual Transmission (수동 변속기 내 기어 선형해석을 통한 동역학적 해석)

  • Ahn, Min-Ju;Cho, Sung-Min;Yoon, Jong-Yun;Kim, Jun-Seong;Lyu, Sung-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.5
    • /
    • pp.1-6
    • /
    • 2007
  • Vibro-impacts in manual transmissions result due to several nonlinearities such as multi-staged clutch characteristics and gear backlashes. For the sake of understanding the torsional system, one specific manual transmission with front engine and front wheel drive configuration is investigated with a linear model under the several assumptions substituting the nonlinear factors. First, this system is examined with the mathematical approaches by expressing the governing equations to find out the torsional motions. Second, this system is analyzed using the linear model in order to understand its modal and frequency response characteristics using eigensolution method and the FRF(Frequency Responses Function) analysis. Third, with the given results from the eigensolutions, several mode shapes are investigated related to the torsional motion characteristics. Fourth, the system characteristics with the FRFs are studied with the basic approach, with which the several key parameters will be suggested based upon the results in the further studies.

Design of Quantitative Feedback Control System for the Three Axes Hydraulic Road Simulator (3축 유압 도로 시뮬레이터의 정량적 피드백 제어 시스템 설계)

  • Kim, Jin-Wan;Xuan, Dong-Ji;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.280-289
    • /
    • 2008
  • This paper presents design of the quantitative feedback control system of the three axes hydraulic road simulator with respect to the dummy wheel for uncertain multiple input-output(MIMO) feedback systems. This simulator has the uncertain parameters such as fluid compressibility, fluid leakage, electrical servo components and nonlinear mechanical connections. This works have reproduced the random input signal to implement the real road vibration's data in the lab. The replaced $m^2$ MISO equivalent control systems satisfied the design specifications of the original $m^*m$ MIMO control system and developed the mathematical method using quantitative feedback theory based on schauder's fixed point theorem. This control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) having the minimum bandwidth for parameters of uncertain plant. The efficacy of the designed controller is verified through the dynamic simulation with combined hydraulic model and Adams simulator model. The Matlab simulation results to connect with Adams simulator model show that the proposed control technique works well under uncertain hydraulic plant system. The designed control system has satisfied robust performance with stability bounds, tracking bounds and disturbance. The Hydraulic road simulator consists of the specimen, hydraulic pump, servo valve, hydraulic actuator and its control equipments