• Title/Summary/Keyword: nonlinear impact

Search Result 466, Processing Time 0.022 seconds

Impact Analysis Modeling Development for CANFLEX Fuel Bundle

  • H.Y. Kang;H.C. Suk;Lee, J.H.;Kim, T.H.;J.H. Ku;J.S. Jun;C.H. Chung;Park, J.H.;K.S. Sim
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.15-20
    • /
    • 1996
  • The nonlinear dynamic analyses were performed by newly developing an appropriate impact modelling for the evaluation of the CANFLEX fuel bundle structural integrity during the refuelling period. The initial load under the refuelling condition is considered as initial velocity at impact incident, and the impact of one bundle contacted another bundle for at short time is studied by performing several dynamic analysis method. The impact analysis shows to predict an appropriate velocity and acceleration profile according to load time history for two bundles impact.

  • PDF

Recent Developments in Multibody Dynamics

  • Schiehlen Werner
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.227-236
    • /
    • 2005
  • Multibody system dynamics is based on classical mechanics and its engineering applications originating from mechanisms, gyroscopes, satellites and robots to biomechanics. Multibody system dynamics is characterized by algorithms or formalisms, respectively, ready for computer implementation. As a result simulation and animation are most convenient. Recent developments in multibody dynamics are identified as elastic or flexible systems, respectively, contact and impact problems, and actively controlled systems. Based on the history and recent activities in multibody dynamics, recursive algorithms are introduced and methods for dynamical analysis are presented. Linear and nonlinear engineering systems are analyzed by matrix methods, nonlinear dynamics approaches and simulation techniques. Applications are shown from low frequency vehicles dynamics including comfort and safety requirements to high frequency structural vibrations generating noise and sound, and from controlled limit cycles of mechanisms to periodic nonlinear oscillations of biped walkers. The fields of application are steadily increasing, in particular as multibody dynamics is considered as the basis of mechatronics.

Nonlinear Multivariable Analysis of SOI, Precipitation, and Temperature in Fukuoka, Japan

  • Jin, Young-Hoon;Akira, Kawamura;Kenji, Jinno;Ronny, Berndtsson
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.124-133
    • /
    • 2004
  • Global climate variations are expected to affect local hydro-meteorological variables like precipitation and temperature. The Southern Oscillation (SO) is one of the major driving forces that give impact on regional and local climatic variation. The relationships between SO and local climate variation are, however, characterized by strong nonlinear variation patterns. In this paper, the nonlinear dynamic relationship between the Southern Oscillation Index (SOI), precipitation, and temperature in Fukuoka, Japan, is investigated using by a nonlinear multivariable approach. This approach is based on the joint variation of these variables in the phase space. The joint phase-space variation of SOI, precipitation, and temperature is studied with the primary objective to obtain a better understanding of the dynamical evolution of local hydro-meteorological variables affected by global atmospheric-oceanic phenomena.

  • PDF

Nonlinear thermal vibration of fluid infiltrated magneto piezo electric variable nonlocal FG nanobeam with voids

  • L. Rubine;R. Selvamani;F. Ebrahimi
    • Coupled systems mechanics
    • /
    • v.13 no.4
    • /
    • pp.337-357
    • /
    • 2024
  • This paper studies, the analysis of nonlinear thermal vibration of fluid-infiltrated FG nanobeam with voids. The effect of nonlinear thermal in a FG ceramic-metal nanobeam is determined using Murnaghan's model. Here the influence of fluids in the pores is investigated using the Skempton coefficient. Hamilton's principle is used to find the equation of motion of functionally graded nanobeam with the effect of refined higher-order state space strain gradient theory (SSSGT). Numerical solutions of the FG nanobeam are employed using Navier's solution. These solutions are validated against the impact of various parameters, including imperfection ratio, fluid viscosity, fluid velocity, amplitude, and piezoelectric strain, on the behavior of the fluid-infiltrated porous FG nanobeam.

Effect of seismic torsional component on nonlinear behavior of reinforced concrete multi-story buildings

  • Abderrahmane Ouazir;Asma Hadjadj;Mansour Ouazir;Mustapha Boukendakji;Hatem Gasmi
    • Structural Engineering and Mechanics
    • /
    • v.91 no.4
    • /
    • pp.349-355
    • /
    • 2024
  • This paper investigates the influence of the torsional component of earthquake on the nonlinear structural behavior of reinforced concrete (RC) buildings. It also estimates the equivalent additional eccentricity that results from this component. For this purpose, we generate torsional accelerograms from translational ones and conduct nonlinear seismic analysis on both regular and irregular structures. The results show that the torsional component has a significant impact on the structural response, especially for irregular structures. The equivalent additional eccentricity of the cases studied was higher than 5% which is the value of accidental eccentricity suggested by many seismic codes.

Nonlinear Dynamic Buckling Behavior of a Partial Spacer Grid Assembly

  • Yoon, Kyung-Ho;Kang, Heung-Seok;Kim, Hyung-Kyu;Song, Kee-Nam;Jung, Yeon-Ho
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.93-101
    • /
    • 2001
  • The spacer grid is one of the main structural components in the fuel assembly, which supports the fuel rods, guides cooling water, and protects the system from an external impact load, such as earthquakes. Therefore, the mechanical and structural properties of the spacer grids must be extensively examined while designing them. In this paper, a numerical method for predicting the buckling strength of spacer grids is presented. Numerical analyses on the buckling behavior of the spacer grids are performed for a various array of sizes of the grids considering that the spacer grid is an assembled structure with thin-walled plates and imposing proper boundary conditions by nonlinear dynamic finite element method using ABAQUS/Explicit. Buckling tests on several numbers of specimens of the spacer grid were also carried out in order to compare the results between the test and the simulation result. The drop test is accomplished by dropping a carriage on the specimen at a pre-determined position. From this test, the specimens are buckled only at the uppermost and the lowermost layer among the multi-cells, which is similar to the local buckling at the weakest point of the grid structure. The simulated results also similarly predicted the local buckling phenomena and were found to give good correspondence with the experimental values for the thin-walled grid structures.

  • PDF

The Asymmetric Effect of Inflation on Economic Growth in Vietnam: Evidence by Nonlinear ARDL Approach

  • NGOC, Bui Hoang
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.2
    • /
    • pp.143-149
    • /
    • 2020
  • Low inflation and sustainable growth have been the major macroeconomic goals being pursued by every developing country, Vietnam inclusive. The effect of inflation on economic growth has been intensively analyzed by a variety of studies, but the empirical evidence more often than not remains controversial and ambiguous. One common hypothesis of previous studies is that they have assumed that the effect of inflation on growth is symmetric. The main purpose of this study is to investigate the asymmetric effect of inflation and money supply on economic growth using the Nonlinear Autoregressive Distributed Lag approach introduced by Shin, Byungchul, and Greenwood-nimmo (2013) for Vietnam over the period 1990-2017. Empirical results provide evidence that the effects of inflation on economic growth are negative and asymmetric in the long run. The impact of money supply on growth is positive in both the short-run and long-run. Accordingly, the impact of the increase in the inflation rate is bigger than the decreasing in the long-run. This different impact is significant and high inflation will destruct economic activities. As a result, the study provides empirical evidence for the authorities to plan monetary policies and control the rate of inflation to achieve sustainable economic development in the long-run.

Dynamic response of reinforced concrete members incorporating steel fibers with different aspect ratios

  • Haido, James H.;Abdul-Razzak, Ayad A.;Al-Tayeb, Mustafa M.;Bakar, B.H. Abu;Yousif, Salim T.;Tayeh, Bassam A.
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.89-98
    • /
    • 2021
  • Investigations on the dynamic behavior of concrete members, incorporating steel fibers with different aspect ratios, are limited so far and do not covered comprehensively in prior studies. Present endeavor is devoted to examine the dynamic response of the steel fibrous concrete beams and slabs under the influence of impact loading. These members were reinforced with steel fibers in different length of 25 mm and 50 mm. Four concrete mixes were designed and used based on the proportion of long and short fibers. Twenty-four slabs and beams were fabricated with respect to the concrete mix and these specimens were tested in impact load experiment. Testing observations revealed that the maximum dynamic deflection or ductility of the member can be achieved with increasing the fiber length. Structural behavior of the tested structures was predicted using nonlinear finite element analysis with specific material constitutive relationships. Eight nodes plate elements have been considered in the present dynamic analysis. Dynamic fracture energy of the members was calculated and agreement ratio, of more than 70%, was noticed between the experimental and analysis outcomes.

An Experimental Study on Low-Velocity Impact Test and Response of Composite Laminates (복합적층판의 저속충격시험 및 거동에 대한 실험적 연구)

  • 최익현;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.359-371
    • /
    • 1994
  • A drop weight type impact test system is designed and set up to experimentally investigate impact responses of composite laminates subjected to the low-velocity impact. Using the test system, the impact velocity and the rebound velocity of the impactor as well as the impact force history are measured. An error of the measured data due to a difference in measuring position of the sensor is corrected and, for the estimation of real contact force history, a method of correcting an error due to friction forces is developed. Experimental methods to fix the boundary edgy of laminate specimens in impact testing are investigated and the impact tests on the specimens fixed by those methods are performed. Impact force histories and dynamic strains measured from the tests are compared with numerical results from the finite element analysis using the contact law. Consequently, the nonlinear numerical results considering the large deflection effects are agreed with the experimental results better than the linear ones.

The Numerical Modelling and Dynamic Collapse Analysis of the Rectangular Tube (사각관의 수치 모델링 및 동적 붕괴 해석)

  • 강신유;한동철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.42-48
    • /
    • 1993
  • In this paper, dynamic collapse behavior of the rectangular tube under impact loading is anlayzed using nonlinear finite element method of shell element. In case of shell element formulation using corotational element coordinates system, dynamic collapse behavior is analyzed without initial imperfection, and with initial imperfection. This paper reveals that the collapse of a rectangular tue without initial imperfection is caused by an error of transformation of the corotational coordinates system.

  • PDF