• Title/Summary/Keyword: nonlinear identification

Search Result 564, Processing Time 0.024 seconds

Damage assessment of shear buildings by synchronous estimation of stiffness and damping using measured acceleration

  • Shin, Soobong;Oh, Seong Ho
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.245-261
    • /
    • 2007
  • Nonlinear time-domain system identification (SI) algorithm is proposed to assess damage in a shear building by synchronously estimating time-varying stiffness and damping parameters using measured acceleration data. Mass properties have been assumed as the a priori known information. Viscous damping was utilized for the current research. To chase possible nonlinear dynamic behavior under severe vibration, an incremental governing equation of vibrational motion has been utilized. Stiffness and damping parameters are estimated at each time step by minimizing the response error between measured and computed acceleration increments at the measured degrees-of-freedom. To solve a nonlinear constrained optimization problem for optimal structural parameters, sensitivities of acceleration increment were formulated with respect to stiffness and damping parameters, respectively. Incremental state vectors of vibrational motion were computed numerically by Newmark-${\beta}$ method. No model is pre-defined in the proposed algorithm for recovering the nonlinear response. A time-window scheme together with Monte Carlo iterations was utilized to estimate parameters with noise polluted sparse measured acceleration. A moving average scheme was applied to estimate the time-varying trend of structural parameters in all the examples. To examine the proposed SI algorithm, simulation studies were carried out intensively with sample shear buildings under earthquake excitations. In addition, the algorithm was applied to assess damage with laboratory test data obtained from free vibration on a three-story shear building model.

Nonlinear Prediction using Gamma Multilayered Neural Network (Gamma 다층 신경망을 이용한 비선형 적응예측)

  • Kim Jong-In;Go Il-Hwan;Choi Han-Go
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.2
    • /
    • pp.53-59
    • /
    • 2006
  • Dynamic neural networks have been applied to diverse fields requiring temporal signal processing such as system identification and signal prediction. This paper proposes the gamma neural network(GAM), which uses gamma memory kernel in the hidden layer of feedforward multilayered network, to improve dynamics of networks and then describes nonlinear adaptive prediction using the proposed network as an adaptive filter. The proposed network is evaluated in nonlinear signal prediction and compared with feedforword(FNN) and recurrent neural networks(RNN) for the relative comparison of prediction performance. Simulation results show that the GAM network performs better with respect to the convergence speed and prediction accuracy, indicating that it can be a more effective prediction model than conventional multilayered networks in nonlinear prediction for nonstationary signals.

  • PDF

An improved Kalman filter for joint estimation of structural states and unknown loadings

  • He, Jia;Zhang, Xiaoxiong;Dai, Naxin
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.209-221
    • /
    • 2019
  • The classical Kalman filter (KF) provides a practical and efficient way for state estimation. It is, however, not applicable when the external excitations applied to the structures are unknown. Moreover, it is known the classical KF is only suitable for linear systems and can't handle the nonlinear cases. The aim of this paper is to extend the classical KF approach to circumvent the aforementioned limitations for the joint estimation of structural states and the unknown inputs. On the basis of the scheme of the classical KF, analytical recursive solution of an improved KF approach is derived and presented. A revised form of observation equation is obtained basing on a projection matrix. The structural states and the unknown inputs are then simultaneously estimated with limited measurements in linear or nonlinear systems. The efficiency and accuracy of the proposed approach is verified via a five-story shear building, a simply supported beam, and three sorts of nonlinear hysteretic structures. The shaking table tests of a five-story building structure are also employed for the validation of the robustness of the proposed approach. Numerical and experimental results show that the proposed approach can not only satisfactorily estimate structural states, but also identify unknown loadings with acceptable accuracy for both linear and nonlinear systems.

Rule-Based Fuzzy-Neural Networks Using the Identification Algorithm of the GA Hybrid Scheme

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.101-110
    • /
    • 2003
  • This paper introduces an identification method for nonlinear models in the form of rule-based Fuzzy-Neural Networks (FNN). In this study, the development of the rule-based fuzzy neural networks focuses on the technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms. The FNN modeling and identification environment realizes parameter identification through synergistic usage of clustering techniques, genetic optimization and a complex search method. We use a HCM (Hard C-Means) clustering algorithm to determine initial apexes of the membership functions of the information granules used in this fuzzy model. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are then adjusted using the identification algorithm of a GA hybrid scheme. The proposed GA hybrid scheme effectively combines the GA with the improved com-plex method to guarantee both global optimization and local convergence. An aggregate objective function (performance index) with a weighting factor is introduced to achieve a sound balance between approximation and generalization of the model. According to the selection and adjustment of the weighting factor of this objective function, we reveal how to design a model having sound approximation and generalization abilities. The proposed model is experimented with using several time series data (gas furnace, sewage treatment process, and NOx emission process data from gas turbine power plants).

FUZZY IDENTIFICATION BY MEANS OF AUTO-TUNING ALGORITHM AND WEIGHTING FACTOR

  • Park, Chun-Seong;Oh, Sung-Kwun;Ahn, Tae-Chon;Pedrycz, Witold
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.701-706
    • /
    • 1998
  • A design method of rule -based fuzzy modeling is presented for the model identification of complex and nonlinear systems. The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of " IF..., THEN,," statements. using the theories of optimization and linguistic fuzzy implication rules. The improved complex method, which is a powerful auto-tuning algorithm, is used for tuning of parameters of the premise membership functions in consideration of the overall structure of fuzzy rules. The optimized objective function, including the weighting factors, is auto-tuned for better performance of fuzzy model using training data and testing data. According to the adjustment of each weighting factor of training and testing data, we can construct the optimal fuzzy model from the objective function. The least square method is utilized for the identification of optimum consequence parameters. Gas furance and a sewage treatment proce s are used to evaluate the performance of the proposed rule-based fuzzy modeling.

  • PDF

Optimal reduction from an initial sensor deployment along the deck of a cable-stayed bridge

  • Casciati, F.;Casciati, S.;Elia, L.;Faravelli, L.
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.523-539
    • /
    • 2016
  • The ambient vibration measurement is an output-data-only dynamic testing where natural excitations are represented, for instance, by winds and typhoons. The modal identification involving output-only measurements requires the use of specific modal identification techniques. This paper presents the application of a reliable method (the Stochastic Subspace Identification - SSI) implemented in a general purpose software. As a criterion toward the robustness of identified modes, a bio-inspired optimization algorithm, with a highly nonlinear objective function, is introduced in order to find the optimal deployment of a reduced number of sensors across a large civil engineering structure for the validation of its modal identification. The Ting Kau Bridge (TKB), one of the longest cable-stayed bridges situated in Hong Kong, is chosen as a case study. The results show that the proposed method catches eigenvalues and eigenvectors even for a reduced number of sensors, without any significant loss of accuracy.

A Study on the Application of Genetic Algorithms and Fuzzy System to GAS Identification System (가스 식별 시스템 설계를 위한 유전알고리즘과 퍼지시스템 적용에 관한 연구)

  • Bang, Young-Keun;Haibo, Zhao;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.45-50
    • /
    • 2011
  • Recently, machine olfactory systems that have been proposed as an artificial substitute of the human olfactory system are being studied by many researchers because they can scent dangerous gases and identify the type of gases in contamination areas instead of the human. In this paper, we present an effective design method for the gas identification system. The design method adopted the sequential combination between genetic algorithms and TSK fuzzy logic system. First, the proposed method allowed the designed gas identification system effectively performing the pattern analysis because it was able to avoid the curse of dimensionality caused by use of a large number of sensors. Secondly, the method led the gas identification system to good performance because it was able to deal with drift characteristics of the sensor data by using description ability of the fuzzy system for nonlinear data. In simulation, we demonstrated the effectiveness of the designed gas identification system by using the simulation results of five types of gases.

  • PDF

Iterative Control-Relevant Identification and Controller Enhancement of MIMO Magnetic Bearing Rigid Rotor (반복적 설계 방식을 사용한 다중입출력 자기베어링 시스템의 식별 및 제어기 성능 향상)

  • Han, Dong-Chul;Lee, Sang-Wook;Ahn, Hyeong-Joon;Lee, Sang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.493-498
    • /
    • 2000
  • The magnetic bearing systems are intrinsically unstable, and need the feedback control of electromagnetic forces with measured displacements. So the controller design plays an important role in constructing high performance magnetic bearing system. In case of magnetic bearing systems, the order of identified model is high because of unknown dynamics included in closed loop systems - such as sensor dynamics, actuator dynamics-and non-linearity of magnetic bearings itself. "Identification for control" - joint optimization of system identification and controller design- is proposed to get the limited-order model which is suited for the design of high-performance controller. We applied the joint identification/controller design scheme to MIMO rigid rotor system supported by magnetic bearings. Firs, we designed controller of a nonlinear simulation model of MIMO magnetic bearing system with this scheme and proved its feasibility. Then, we performed experiments on MIMO rigid rotor system supported by magnetic bearings, and the performance of closed-loop system is improved gradually during the iteration.

  • PDF

Identification of fractional-derivative-model parameters of viscoelastic materials using an optimization technique (최적화 기법을 이용한 점탄성물질의 유리미분모델 물성값 추정)

  • Kim, Sun-Yong;Lee, Doo-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1235-1242
    • /
    • 2006
  • Viscoelastic damping materials are widely used to reduce noise and vibration because of its low cost and easy implementation, for examples, on the body structure of passenger cars, air planes, electric appliances and ships. To design the damped structures, the material property such as elastic modulus and loss factor is essential information. The four-parameter fractional derivative model well describes the nonlinear dynamic characteristics of the viscoelastic damping materials with respect to both frequency and temperature with fewer parameters than conventional spring-dashpot models. However the identification procedure of the four-parameter is very time-consuming one. An efficient identification procedure of the four-parameters is proposed by using an FE model and a gradient-based numerical search algorithm. The identification procedure goes two sequential steps to make measured FRFs coincident with simulated FRFs: the first one is a peak alignment step and the second one is an amplitude adjustment. A numerical example shows that the proposed method is efficient and robust in identifying the viscoelastic material parameters of fractional derivative model.

  • PDF

System Identification Using Hybrid Recurrent Neural Networks (Hybrid 리커런트 신경망을 이용한 시스템 식별)

  • Choi Han-Go;Go Il-Whan;Kim Jong-In
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.1
    • /
    • pp.45-52
    • /
    • 2005
  • Dynamic neural networks have been applied to diverse fields requiring temporal signal processing. This paper describes system identification using the hybrid neural network, composed of locally(LRNN) and globally recurrent neural networks(GRNN) to improve dynamics of multilayered recurrent networks(RNN). The structure of the hybrid nework combines IIR-MLP as LRNN and Elman RNN as GRNN. The hybrid network is evaluated in linear and nonlinear system identification, and compared with Elman RNN and IIR-MLP networks for the relative comparison of its performance. Simulation results show that the hybrid network performs better with respect to the convergence and accuracy, indicating that it can be a more effective network than conventional multilayered recurrent networks in system identification.

  • PDF