• Title/Summary/Keyword: nonlinear friction

Search Result 507, Processing Time 0.023 seconds

Ultimate Behavior of High-Tension Bolted Joints Considering Plate Thickness and Bolt Size (판 두께와 볼트 크기를 고려한 고장력 볼트 이음부의 극한 거동)

  • Kim, Sung-Bo;Choi, Jong-Kyoung;Heo, In-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.515-524
    • /
    • 2008
  • The ultimate behavior of high-tension bolted joints with various plate thickness and bolt size is investigated using nonlinear F.E. analysis and experimental study. The relation with sliding load, bolt deformation, and failure modes are presented based on plate thickness and bolt size. Three kinds of the bolt diameter(M20, M22, M24) and five types of the steel plates (l2mm, 16mm, 20mm, 30mm, 40mm) are considered for the ultimate behavior of the bolted joints. The numerical model, constructed by commercial F.E. program, ABAQUS, of ultimate behavior of bolted joints is introduced and verified by experimental results. The force-displacement and force-axial strain relations are measured and compared with the results by 3D finite element analysis.

Numerical Simulation on Tidal Currents in a Bay - Application to Gamag Bay - (만내의 조류수치해석 - 가막만을 중심으로 -)

  • Lee, Gwan-Su;Lee, Yeong-Seok;Lee, Sam-No
    • Water for future
    • /
    • v.24 no.4
    • /
    • pp.41-48
    • /
    • 1991
  • This paper describes the characteristics of tidal currents in the Gamag Bay by using the two-dimensional nonlinear hydrodynamic euation. The basic equations are derived by Navier-Stokes momentum equation and continuity equation and its characteristics critically are reviewed, and they are analysed by the implicit finite difference method. The numerical model is constructed two-dimensional(depth-averaged) simple layer model. This paper investigates the stability of solution and convergence of solution in application of the method to Gamag Bay, and the reproducibility of the simulation is also discussed in comparison with the results of field survey. The following items are clarifide through the numerical investigation; i)the reproduc-ibility of tidal range and currents are quite acceptable, comparing with the results of model tests and field data, and ii) tidal cycle for convergent solution is four tidal cycle, also, iii) bottom friction is successfully represented as c=(1/n))$h^{1/6}$.

  • PDF

Unsteady laminar boundary layer over a heated circular cylinder started impulsively from rest (갑자기 출발하는 가열된 원통 주위의 비정상 충류경계층 유동에 관한 수치적 연구)

  • 김재수;장근식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.262-270
    • /
    • 1987
  • A numerical method is presented which can solve the unsteady momentum and thermal boundary layers, coupled through the agency of buoyancy force, over a heated circular cylinder impulsively started from rest. By linearizing the nonlinear finite difference equations without sacrificing accuracy, numerical solutions are obtained at each time step without iteration. To get rid of the requirement of excessive number of grid points in the region of reversed flow, special form of transformed variables are used, by which the computational boundary layer thickness is maintained almost constant. These numerical properties enable the method to easily handle the region of reversed flow and how the singularity develops in the interior of the boundary layer. In order to investigated the thermal effects on the skin friction, heat flux, displacement thickness and on the separation, we have successfully solved three different cases of the buoyancy parameter .alpha.(Gr/Re$^{2}$).

Nonlinear numerical modelling for the effects of surface explosions on buried reinforced concrete structures

  • Nagy, N.;Mohamed, M.;Boot, J.C.
    • Geomechanics and Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-18
    • /
    • 2010
  • The analysis of structure response and design of buried structures subjected to dynamic destructive loads have been receiving increasing interest due to recent severe damage caused by strong earthquakes and terrorist attacks. For a comprehensive design of buried structures subjected to blast loads to be conducted, the whole system behaviour including simulation of the explosion, propagation of shock waves through the soil medium, the interaction of the soil with the buried structure and the structure response needs to be simulated in a single model. Such a model will enable more realistic simulation of the fundamental physical behaviour. This paper presents a complete model simulating the whole system using the finite element package ABAQUS/Explicit. The Arbitrary Lagrange Euler Coupling formulation is used to model the explosive charge and the soil region near the explosion to eliminate the distortion of the mesh under high deformation, while the conventional finite element method is used to model the rest of the system. The elasto-plastic Drucker-Prager Cap model is used to model the soil behaviour. The explosion process is simulated using the Jones-Wilkens-Lee equation of state. The Concrete Damage Plasticity model is used to simulate the behaviour of concrete with the reinforcement considered as an elasto-plastic material. The contact interface between soil and structure is simulated using the general Mohr-Coulomb friction concept, which allows for sliding, separation and rebound between the buried structure surface and the surrounding soil. The behaviour of the whole system is evaluated using a numerical example which shows that the proposed model is capable of producing a realistic simulation of the physical system behaviour in a smooth numerical process.

Evaluation of Seismic Response of Masonry Walls Strengthened with Steel-bar Truss Systems by Non-linear Finite Element Analysis (비선형 유한요소 해석에 의한 강봉 트러스 시스템으로 보강된 조적벽체의 내진거동 평가)

  • Hwang, Seung-Hyeon;Yang, Keun-Hyeok;Kim, Sang-Hee;Lim, Jin-Sun;Im, Chae-Rim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.20-27
    • /
    • 2021
  • The present study presents a nonlinear finite element analysis (FEA) approach using the general program of Abaqus to evaluate the seismic response of unreinforced masonry walls strengthened with the steel bar truss system developed in the previous investigation. For finite element models of masonry walls, the concrete damaged plasticity (CDP) and meso-scale methods were considered on the basis of the stress-strain relationships under compression and tension and shear friction-slip relationship of masonry prisms proposed by Yang et al. in order to formulate the interface characteristics between brick elements and mortars. The predictions obtained from the FEA approach were compared with test results under different design parameters; as a result, a good agreement could be observed with respect to the crack propagation, failure mode, rocking strength, peak strength, and lateral load-displacement relationship of masonry walls. Thus, it can be stated that the proposed FEA approach shows a good potential for designing the seismic strengthening of masonry walls.

Seismic Retrofitting Effects of General Hospital Using Self-Centering Energy Dissipative Bracing System (자기복구형 에너지소산 가새시스템을 적용한 종합병원의 내진보강효과)

  • Kim, Taewan;Chu, Yurim;Bhandari, Diwas
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.159-167
    • /
    • 2019
  • 2016 Gyeongju and 2017 Pohang earthquakes led Koreans to acknowledge that the Korean peninsula is not an earthquake-free zone anymore. Among various buildings crucial to after-shock recovery, general hospital buildings, especially existing old ones, are very significant so seismic retrofitting of those must be an important issue. Self-centering energy dissipative(SCED) brace is one of retrofitting methods, which consists of tendon with restoring force and friction device capable of dissipating seismic energy. The strength of the SCED brace is that the tendon forces a structure to go back to the original position, which means residual drift can be negligible. The residual drift is a very important parameter to determine usableness of general hospitals after shock. To the contrary, buckling-restrained braces(BRB) are also a very effective way to retrofit because they can resist both compressive and tensile, but residual drift may exist when the steel core yields. On this background, the seismic retrofitting effect of general hospitals reinforced with SCED braces was investigated and compared to that of the BRD in this study. As a result, although the floor acceleration cannot be reduced, the story drift and residual drift, and the shear demand of walls significantly decreased. Consequently, seismic retrofitting by SCED braces are very effective for domestic low-rise general hospitals.

Fault Classification of a Blade Pitch System in a Floating Wind Turbine Based on a Recurrent Neural Network

  • Cho, Seongpil;Park, Jongseo;Choi, Minjoo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.287-295
    • /
    • 2021
  • This paper describes a recurrent neural network (RNN) for the fault classification of a blade pitch system of a spar-type floating wind turbine. An artificial neural network (ANN) can effectively recognize multiple faults of a system and build a training model with training data for decision-making. The ANN comprises an encoder and a decoder. The encoder uses a gated recurrent unit, which is a recurrent neural network, for dimensionality reduction of the input data. The decoder uses a multilayer perceptron (MLP) for diagnosis decision-making. To create data, we use a wind turbine simulator that enables fully coupled nonlinear time-domain numerical simulations of offshore wind turbines considering six fault types including biases and fixed outputs in pitch sensors and excessive friction, slit lock, incorrect voltage, and short circuits in actuators. The input data are time-series data collected by two sensors and two control inputs under the condition that of one fault of the six types occurs. A gated recurrent unit (GRU) that is one of the RNNs classifies the suggested faults of the blade pitch system. The performance of fault classification based on the gate recurrent unit is evaluated by a test procedure, and the results indicate that the proposed scheme works effectively. The proposed ANN shows a 1.4% improvement in its performance compared to an MLP-based approach.

Integral Sliding-based Dynamic Control Method using Genetic Algorithm on an Omnidirectional Mobile Robot (전방향 모바일 로봇에서 유전알고리즘을 이용한 적분 슬라이딩 기반 동적 제어 기법)

  • Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1817-1825
    • /
    • 2021
  • Omnidirectional mobile robots can be mobile in any direction without changing the robot's direction, making them easy to apply in many applications and providing excellent maneuverability. Omnidirectional mobile robots have non-linear dynamic components such as friction, making them difficult to model accurately. In this paper, we linearize the mobile robot system using the mobile robot's inverse dynamics and integral sliding mode control method to remove these nonlinear components. And the position and velocity gains are optimized using a genetic algorithm to realize the optimal performance of the proposed system control method. As a result of the performance evaluation, the genetic algorithm's control method showed superior performance than the control method with an arbitrary gain. And the proposed inverse dynamic and integral sliding mode control method can be applied to other control methods. It can be beneficial for designing a linear control system.

Stability evaluation model for loess deposits based on PCA-PNN

  • Li, Guangkun;Su, Maoxin;Xue, Yiguo;Song, Qian;Qiu, Daohong;Fu, Kang;Wang, Peng
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.551-560
    • /
    • 2021
  • Due to the low strength and high compressibility characteristics, the loess deposits tunnels are prone to large deformations and collapse. An accurate stability evaluation for loess deposits is of considerable significance in deformation control and safety work during tunnel construction. 37 groups of representative data based on real loess deposits cases were adopted to establish the stability evaluation model for the tunnel project in Yan'an, China. Physical and mechanical indices, including water content, cohesion, internal friction angle, elastic modulus, and poisson ratio are selected as index system on the stability level of loess. The data set is randomly divided into 80% as the training set and 20% as the test set. Firstly, principal component analysis (PCA) is used to convert the five index system to three linearly independent principal components X1, X2 and X3. Then, the principal components were used as input vectors for probabilistic neural network (PNN) to map the nonlinear relationship between the index system and stability level of loess. Furthermore, Leave-One-Out cross validation was applied for the training set to find the suitable smoothing factor. At last, the established model with the target smoothing factor 0.04 was applied for the test set, and a 100% prediction accuracy rate was obtained. This intelligent classification method for loess deposits can be easily conducted, which has wide potential applications in evaluating loess deposits.

Active Eanh Pressure Against Caisson Backfilled with Crushed Rock and Sand (II) : Verification and Application (사석과 모래로 뒷채움된 케이슨에 작용하는 주동토압 (II) : 검증과 적용)

  • Paik Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.2
    • /
    • pp.29-39
    • /
    • 2006
  • In the companion paper (Paik 2006), a new formulation for calculating the nonlinearly distributed active earth pressure acting on a caisson backfilled with crushed rock and sand is proposed, and it takes into account arching effects as well as difference in internal friction angles and unit weights between sand and crushed rock. In this study, in order to partially check the accuracy of the proposed equation, the results of the proposed equation are compared with the equation proposed by Paik (2003a) for caissons with rough surface and homogeneous backfill, and are compared with results of Rankine's theory for caissons with smooth surface and homogeneous backfill. In addition, a parametric study is performed to investigate the effect of $phi_{r}$, $phi_{s}$, $\delta_{r}$, $\gamma_{r}$, $\gamma_{s}$ and $\beta$ on the magnitude of active earth pressure acting on the caisson, and construction methods for minimizing active earth pressure on the caisson are also provided based on the results of a parametric study.