• 제목/요약/키워드: nonlinear finite element analysis program

Search Result 365, Processing Time 0.03 seconds

Material Properties of Polymer-Impregnated Concrete and Nonlinear Fracture Analysis of Flexural Members (폴리머 침투콘크리트의 재료특성과 휨부재의 비선형 파괴해석)

  • 변근주;이상민;최홍식;노병철
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.97-107
    • /
    • 1994
  • The objective of this study is to develop polymer-impregnated concrete(PIC), which is a newly developed composite material made by impregnating polymer impregnanls into hardened normal concrete, and to develop analytical techniques for its proper applications. Crystalline methyl methacrylate(MMA) is chosen as a monomer of polymer impregnants. The corrlpositions of polymer impregnants and producing processes are developed by analyzing the effects of penetration, polymerization, thermal safety, and strengthening characteristics. On t he basis of experimental results of this study, various strength characteristics and stress strain constitutive relations are formulated in terms of the compressive strength of normal concrete and the polymer loadings, which can be applied for analysis and design of PIC members. In order to provide a model for fracture analysis of flexural members, fracture toughness, fracture energy, critical crack width, and tension softening relations near crack tip are also formulated in terms of member depth, initial notch depth, and the flexural strength of normal concrete. The structural analysis procedure and the finite element computer program developed in the study are applicable to evaluate elastic behavior, ultimate strength, and tension softening behavior of MMA type PIC structural members subject to various loading conditions. The accuracy and effectiveness of the developed computer program is examined by comparing the anal ytical results with the experimental results. Therefore, it is concluded that the developed structural analysis procedure and the finite element computer program are applicable to analysis and design of in-situ and precast PIC structural members.

Seismic Performance Assessment of RC Pier Walls under Cyclic Out-of-plane Loading (면외방향으로 반복하중을 받는 철근콘크리트 벽식 교각의 내진성능평가)

  • Kim, Tae-Hoon;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.73-83
    • /
    • 2006
  • The purpose of this study is to investigate the seismic behavior of reinforced concrete pier walls under cyclic out-of-plane loading and to develop improved seismic design criteria. The accuracy and objectivity of the assessment process can be enhanced by using a sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. A 4-node flat shell element with drilling rotational stiffness is used for spatial discretization. The layered approach is used to discretize the behavior of concrete and reinforcement through the thickness. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The method is verified a useful tool to assess the seismic performance of reinforced concrete pier walls subjected to cyclic out-of-plane load through comparing with reliable experimental results.

Direct displacement-based seismic assessment of concrete frames

  • Peng, Chu;Guner, Serhan
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.355-365
    • /
    • 2018
  • Five previously-tested reinforced concrete frames were modelled using a nonlinear finite element analysis procedure to demonstrate the accurate response simulations for seismically-deficient frames through pushover analyses. The load capacities, story drifts, and failure modes were simulated. This procedure accounts for the effects of shear failures and the shear-axial force interaction, and thus is suitable for modeling seismically-deficient frames. It is demonstrated that a comprehensive analysis method with a capability of simulating material constitutive response and significant second-order mechanisms is essential in achieving a satisfactory response simulation. It is further shown that such analysis methods are invaluable in determining the expected seismic response, safety, and failure mode of the frame structures for a performance-based seismic evaluation. In addition, a new computer program was developed to aid researchers and engineers in the direct displacement-based seismic design process by assessing whether a frame structure meets the code-based performance requirements by analyzing the analysis results. As such, the proposed procedure facilitates the performance-based design of new buildings as well as the numerical assessment and retrofit design of existing buildings. A sample frame analysis was presented to demonstrate the application and verification of the approach.

Optimum Design of the Intake Tower of Reservoir(I) - With Application of Working Stress Design Method - (저수지 취수탑의 최적설계에 관한 연구(I) -허용능력 설계법을 중심으로-)

  • 김종옥;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.2
    • /
    • pp.67-81
    • /
    • 1988
  • The purpose of the present study is to set up an efficient optimum design method for the large-scale reinforced concrete cylindrical shell structures like intake tower of reservoir and to establish a solid foundation for the automatic optimum structural design combined with finite element analysis. The major design variables are the dimensions and steel areas of each member of the structures. The construction cost which is composed of the concrete, steel, and form work costs, respectively, is taken as the objective function. The constraint equations for the design of intake-tower are derived on the basis of the working stress design method. The corresponding design guides including the standard specification for concrete structures have been also employed in deraving the constraint conditions. The present nonlinear optimization problem is solved by SUMT method. The reinforced concrete intake-tower is decomposed into three major substructures. The optimization is then conducted for both the whole structure and the substructures. The following conclusions can be drawn from the present study. 1. The basis of automatic optimum design of reinforced concrete cylindrical shell structures which is combined with finite element analysis was established. 2. The efficient optimization algorithms which can execute the automatic optimum desigh of reinforced concrete intake-tower based on the working stress design method were developed. 3. Since the objective function and design variables were converged to their optimum values within the first or second iteration, the optImization algorithms developed in this study seem to be efficient and stable. 4. The difference in construction cost between the optimum designs with the substructures and with the entire structure was found to be small and thus the optimum design with the substructures,rnay conveniently be used in practical design. 5. The major active constraints of each structural member were found to be the tensile stress insteel for salb, the minimum lonitudinal steel ratio constraints for tower body and the shearing stress in concrete, tensile stress in steel and maximum eccentricityconstraints for footing, respectively. 6. The computer program develope in the present study can be effectively used even by an unexperienced designer for the optimum design of reinforced concrete intake-tower.

  • PDF

RC Flat Plate Subject to Combined In-Plane Compressive and Out-of-Plane Floor Loads (면내 압축력 및 면외 바닥하중을 받는 플랫 플레이트 슬래브)

  • Park, Hong-Gun
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.231-242
    • /
    • 1999
  • This paper presents a numerical study on the flat plates in deep basements, subjected to out-of-plane floor load and in-plane compressive load due to soil and hydraulic lateral pressure. For nonlinear finite element analysis, a computer program addressing material and geometric nonlinearities is developed. The validity of the numerical model is established by comparison with existing experiments performed on plates simply supported on four edges. The flat plates to be studied are designed according to the Direct Design Method in Korean Building Code for Structural Concrete. Through numerical study on the effects of different load combinations and loading sequence, the load condition that governs the strength of the flat plates is determined. For the plates under the governing load condition, parametric studies are performed to investigate variations of the strength with reinforcement ratio, aspect ratio, concrete strength, and slenderness ratio. Based on the numerical results, the floor load magnification factor is proposed.

Prediction of Prestressing Steel Stress at Ultimate State of Prestressed Concrete Members with External Unbonded Tendons (외부 프리스트레스트 콘크리트 부재의 극한상태에서의 강선응력예측식 제안)

  • 오병환;유성원
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.13-24
    • /
    • 1999
  • The external, unbonded prestressed concrete(PSC) members exhibit very different structural behavior from that of internal bonded PSC members because of eccentricity change and slip occurrence during loading process. The purpose of the present study is to propose the ultimate failure stresses of prestressing (PS) steels for those external unbonded PSC members. To this end, a comprehensive analysis has been made using the nonlinear finite element analysis program developed recently for external unbonded PSC members by authors. A series of major influencing variables have been included in the analysis. It was found that the span-depth ratio, neutral axis depth-effective depth ratio, load geometry, amount of ordinary steel, and prestressing steel ration have great influence for the ultimate failue stress of PS steel is preposed and is compared with experimental dat as well as existing formulas for internal unbonded members. The Comparison indicates that the proposed equation agrees relatively well with experimental data and that existing formulas including ACI and AASHTO equations show some discrepancies from experimental ones. The present study allows more realistic analysis and design of prestressed concrete structures with external unbonded tendons.

Reliability of Load-Carrying Capacity of RC Deep Beams (철근콘크리트 깊은 보의 내하력에 대한신뢰도 평가)

  • Cheon Ju-Hyun;Kim Tae-Hoon;Lee Sang-Cheol;Shin Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.955-962
    • /
    • 2005
  • Still no accurate theory exists for predicting ultimate shear strength of deep reinforced concrete beams because of the structural and material non-linearity after cracking. Currently, the load capacity assesment is performed for the upper structure of the bridges and containing non-reliability in the applications and results. The purpose in this study is to evaluate analytically the complex shear behaviors and normal strength for the reinforced concrete deep beams and to offer the accuracy load capacity assesment method based on the reliability theories. This paper presents a method for the load capacity assesment of reinforcement concrete deep beams using nonlinear finite element analysis. A computer program named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material non-linearity is taken Into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. From the results, determine the reliability index for the failure base on the Euro Code. Then, calculate additional reduction coefficient to satisfy the goals from the reliability analysis. The proposed numerical method for the load capacity assesment of reinforced concrete deep beams is verified by comparison with the others methods.

Dynamic Response Analysis of Nonlinear Sloshing in Two Dimensional Rectangular Tank using Finite Element Method (유한요소법을 이용한 2차원 사각탱크내 비선형 슬로싱 동응답 해석)

  • 조진래;이홍우;하세윤;박태학;이우용
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.33-42
    • /
    • 2003
  • This paper deals with the FEM analysis of nonlinear sloshing of incompressible, invicid and irrotational flow in two dimensional rectangular tank. We use laplace equation based on potential theory as governing equation. For large amplitude sloshing motion, kinematic and dynamic free surface conditions derived from Bernoulli equation are applied. This problem is solved by FEM using 9-node elements. For the time integration and accurate velocity calculation, we introduce predictor-corrector time marching scheme and least square method. Also, numerical stability in tracking of free surface is obtained by direct calculation of free surface location to time variation. Numerical results of sloshing induced by harmonic excitations, while comparing with those of linear theory and references, prove the accuracy and stability. After verification of our program, we analyze sloshing response characteristics to the fluid height and the excitation amplitude.

Aeroelastic Response Analysis of 3D Wind Turbine Blade Considering Rotating and Flow Separation Effects (회전과 유동박리효과를 고려한 3차원 풍력발전 터빈 블레이드의 공탄성 응답 해석)

  • Kim, Dong-Hyun;Kim, Yo-Han;Kim, Dong-Man;Kim, Yu-Sung;Hwang, Mi-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.68-75
    • /
    • 2009
  • In this study, aeroelastic response analyses have been conducted for a 3D wind turbine blade model. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate detailed dynamic responsed of wind turbine blade. Vibration analyses of rotating wind-turbine blade have been conducted using the general nonlinear finite element program, SAMCEF (Ver.6.3). Reynolds-averaged Navier-Stokes (RANS)equations with spalart-allmaras turbulence model are solved for unsteady flow problems of the rotating turbine blade model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous Mach contour on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating wind-turbine blade model.

  • PDF

Performance-based reliability assessment of RC shear walls using stochastic FE analysis

  • Nosoudi, Arina;Dabbagh, Hooshang;Yazdani, Azad
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.645-655
    • /
    • 2021
  • Performance-based reliability analysis is a practical approach to investigate the seismic performance and stochastic nonlinear response of structures considering a random process. This is significant due to the uncertainties involved in every aspect of the analysis. Therefore, the present study aims to evaluate the performance-based reliability within a stochastic finite element (FE) framework for reinforced concrete (RC) shear walls that are considered as one of the most essential elements of structures. To accomplish this purpose, deterministic FE analyses are conducted for both squat and slender shear walls to validate numerical models through experimental results. The presented numerical analysis is performed by using the ABAQUS FE program. Afterwards, a random-effects investigation is carried out to consider the influence of different random variables on the lateral load-top displacement behavior of RC members. Using these results and through utilizing the Monte-Carlo simulation method, stochastic nonlinear analyses are also performed to generate random FE models based on input parameters and their probabilistic distributions. In order to evaluate the reliability of RC walls, failure probabilities and corresponding reliability indices are calculated at life safety and collapse prevention levels of performance as suggested by FEMA 356. Moreover, based on reliability indices, capacity reduction factors are determined subjected to shear for all specimens that are designed according to the ACI 318 Building Code. Obtained results show that the lateral load and the compressive strength of concrete have the highest effects on load-displacement responses compared to those of other random variables. It is also found that the probability of shear failure for the squat wall is slightly lower than that for slender walls. This implies that 𝛽 values are higher in a non-ductile mode of failure. Besides, the reliability of both squat and slender shear walls does not change significantly in the case of varying capacity reduction factors.