• 제목/요약/키워드: nonlinear finite element analysis program

검색결과 364건 처리시간 0.026초

VEHICLE DYNAMIC SIMULATION USING A NONLINEAR FINITE ELEMENT ANALYSIS CODE

  • Yu, Y.S.;Cho, K.Z.;Chyun, I.B.
    • International Journal of Automotive Technology
    • /
    • 제6권1호
    • /
    • pp.29-35
    • /
    • 2005
  • The structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of ride and handling, durability, Noise/Vibration/Harshness (NVH), crashworthiness, and occupant safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer. In this study, the Virtual Proving Ground (VPG) approach has been developed to simulate dynamic nonlinear events as applied to automotive ride & handling. The finite element analysis technique provides a unique method to create and analyze vehicle system models, capable of including vehicle suspensions, powertrains, and body structures in a single simulation. Through the development of this methodology, event-based simulations of vehicle performance over a given three-dimensional road surface can be performed. To verify the predicted dynamic results, a single lane change test was performed. The predicted results were compared with the experimental test results, and the feasibility of the integrated CAE analysis methodology was verified.

Nonlinear finite element analysis of loading transferred from column to socket base

  • Anil, Ozgur;Uyaroglu, Burak
    • Computers and Concrete
    • /
    • 제11권5호
    • /
    • pp.475-492
    • /
    • 2013
  • Since the beginning of the 90 s, depending on the growth of the industrial sector in Turkey, factory constructions have been increased. The cost of precast concrete buildings is lower than the steel ones for this reason the precast structural systems are used more. Precast concrete structural elements are mostly as strong as not to have damage in the earthquake but weakness of connections between elements causes unexpected damages of structure during earthquake. When looking at the previous researches, it can be seen that there is a lack of studies about socket type base connections although there were many experimental and analytical studies about the connections of precast structural elements. The aim of this study is to investigate the stress transfer mechanism between column and the socket base wall with finite element method. For the finite element analysis ANSYS software was used. A finite element model was created which is the simulation of experimental research executed by Canha et al. (2009) under vertical and horizontal forces. Results of experimental research and finite element analysis were compared to create a successful simulation of experimental program. After determining the acceptable parameters, models of socket bases were created. Model dimensions were chosen according to square section column sizes 400, 450, 500, 550 and 600 mm which were mostly used in industrial buildings. As a result of this study, stress distribution at center section of the socket base models were observed and it is found that stress distribution affects triangular at the half of socket bottom and top.

근역지반의 비선형성을 고려한 시간영역 지반-구조물 상호작용 해석기법의 개발 (Soil-Structure Interaction Analysis Method in Time Domain considering Near-Field Nonlinearity)

  • 김문겸;임윤묵;김태욱;박정열
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.309-314
    • /
    • 2001
  • In this study, the nonlinear soil structure interaction analysis method based on finite element and boundary element method is developed. In the seismic region, the nonlinearity of near field soil has to be considered for more exact reflection of soil-structure interaction effect. Thus, nonlinear finite element program coupled with boundary elements is developed for nonlinear soil-structure interaction analysis. Using the developed numerical algorithm, the nonlinear soil-structure interaction analysis is performed and responses due to dynamic forces and seismic excitation are investigated. The developed method is verified by comparing with previous studies.

  • PDF

Virtual Modeling Data와 비선형 해석 프로그램의 Interface 설계 (Interface Design of Virtual Modeling Dataand Nonlinear Analysis Program)

  • 박재근;이헌민;조성훈;이광명;신현목
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.100-103
    • /
    • 2008
  • Recently Development of construction system that subjective operators share and control information efficiently based on the three-dimensional space and design information throughout life cycle of construction project is progressing dynamically. In case of civil structures which are infrastructure, Demand for structure of complex system which has multi-functions such as super and smart bridges and express rails is increasing and system development which computerizes and integrates process of structure design is in need. For that, research about link way between three dimensional modeling data and structure analysis programs should be preceded. In this research, therefore, research about interface design between three dimensional virtual modeling data to automate efficient civil-structure-design and nonlinear finite element analysis program which is made up of reinforced concrete material model that express material's character clearly.

  • PDF

낮은 심도의 연약지반에 대한 비선형 지진응답해석 (Nonlinear Seismic Response Analysis for Shallow Soft Soil Deposits)

  • 박홍근;김동관;이경구;김동수
    • 한국지진공학회논문집
    • /
    • 제14권5호
    • /
    • pp.1-12
    • /
    • 2010
  • 본 연구에서는 얕은 연약지반에서 구조물-지반 상호작용의 영향을 받는 구조물의 비탄성거동을 정확히 나타낼 수 있는 유한요소해석 방법을 연구하였다. 이를 위하여, 국내의 지반특성을 반영한 얕은 연약지반과 단자유도 구조물로 2차원 유한요소모델을 구성하고, 다양한 지진파와 지반에 대해 OpenSees 해석프로그램을 이용한 비선형 시간이력해석을 수행하였다. 연약지반의 비선형거동을 반영하기 위하여 일반적으로 흔히 사용되는 등가선형 주파수영역 해석 결과와 비선형 시간이력 유한요소해석 결과의 차이를 검토하였다. 그 비교결과는 등가선형강성을 사용하고 지반-구조물 상호작용을 고려하지 않는 주파수영역해석은 단주기영역의 구조물의 응답스펙트럼을 과대평가할 수 있음을 보여주었다. 응답스펙트럼에 대한 지반-구조물 상호작용의 영향은 기초크기와 구조물의 질량의 변화와 큰 관계 없이 일정하게 나타났다.

한국형 원전 격납건물의 비선형해석에 관한 연구 (A Study on the Nonlinear Analysis of Containment Building in Korea Standard Nuclear Power Plant)

  • 이홍표;전영선;이상진
    • 한국전산구조공학회논문집
    • /
    • 제20권3호
    • /
    • pp.353-364
    • /
    • 2007
  • 이 논문에서는 원전 격납건물의 극한내압능력 및 파괴모드 평가를 위해 개발된 비선형 유한요소해석 프로그램 NUCAS 코드에 대하여 기술하였다. NUCAS는 미시적인 재료모델을 도입한 퇴화 쉘 요소와 탄소성 재료모델을 도입한 저차고체요소로 구성되어 있고, 퇴화 쉘 요소와 저차고체요소는 유한요소에서 발생할 수 있는 강성과대(overstiffness) 및 묶임현상(locking phenomenon)을 방지하기 위해서 각각 가변형도법(assumed strain method)과 개선된 가변형도법(enhanced assumed strain method)을 적용하였다. 개발된 NUCAS코드의 성능을 검증하기 위해서 다양한 철근콘크리트 구조물의 벤치마크 테스트를 수행하였고, 그 결과로부터 이 논문에서 개발한 유한요소해석 프로그램의 해석결과는 실험결과와 잘 일치하였다.

Timoshenko보 이론 및 층상화 단면모델을 이용한 RC 기둥의 비선형 유한요소해석 (Nonlinear Finite Element Analysis of Reinforced Concrete Column using Timoshenko Beam Theory and Fiber Section Model)

  • 박순응;박문호;권민호
    • 대한토목학회논문집
    • /
    • 제26권4A호
    • /
    • pp.577-585
    • /
    • 2006
  • 본 연구에서는 비선형 전단변형을 고려할 수 있는 Timoshenko보 이론을 정식화 하였다. 제안된 모델은 전단변형을 고려하므로서 짧은 기둥이나 전단 지배 기둥에서 일반적인 Bernoulli보 이론 보다 합리적인 결과를 보여준다. 단면은 층상화 모델을 이용하였으며, 층상화 단면 모델은 단면을 분활하여 소성화 진행과정을 관찰할 수 있으며 축력과 모멘트의 상호작용을 알 수 있다. 정식화한 요소는 일반적인 철근 콘크리트 부재의 해석을 위해 유한요소 프로그램에 적용하였다. 철근콘크리트 기둥의 해석을 실험결과와 비교하였고, 철근콘크리트 기둥에 대한 거동특성을 분석하였다.

Finite element micro-modelling of RC frames with variant configurations of infill masonry

  • Mohammad, Aslam F.;Khalid, Fatima;Khan, Rashid A.
    • Structural Engineering and Mechanics
    • /
    • 제81권4호
    • /
    • pp.395-409
    • /
    • 2022
  • The presence of infill generally neglected in design despite the fact that infill contribution significantly increase the lateral stiffness and strength of the reinforced concrete frame structure. Several experimental studies and computational models have been proposed to capture the rational response of infill-frame interaction at global level. However, limited studies are available on explicit finite element modelling to study the local behavior due to high computation and convergence issues in numerical modelling. In the current study, the computational modelling of RC frames is done with various configurations of infill masonry in terms of types of blocks, lateral loading and reinforcement detailing employed with material nonlinearities, interface contact issues and bond-slip phenomenon particularly near the beam-column joints. To this end, extensive computational modelling of five variant characteristics test specimens extracted from the detailed experimental program available in literature and process through nonlinear static analysis in FEM code, ATENA generally used to capture the nonlinear response of reinforced concrete structures. Results are presented in terms of damage patterns and capacity curves by employing the finest possible detail provided in the experimental program. Comparative analysis shows that good correlation amongst the experimental and numerical simulated results both in terms of capacity and crack patterns.

Nonlinear finite element analysis of high strength concrete slabs

  • Smadi, M.M.;Belakhdar, K.A.
    • Computers and Concrete
    • /
    • 제4권3호
    • /
    • pp.187-206
    • /
    • 2007
  • A rational three-dimensional nonlinear finite element model is described and implemented for evaluating the behavior of high strength concrete slabs under transverse load. The concrete was idealized by using twenty-nodded isoparametric brick elements with embedded reinforcements. The concrete material modeling allows for normal (NSC) and high strength concrete (HSC), which was calibrated based on experimental data. The behavior of concrete in compression is simulated by an elastoplastic work-hardening model, and in tension a suitable post-cracking model based on tension stiffening and shear retention models are employed. The nonlinear equations have been solved using the incremental iterative technique based on the modified Newton-Raphson method. The FE formulation and material modeling is implemented into a finite element code in order to carry out the numerical study and to predict the behavior up to ultimate conditions of various slabs under transverse loads. The validity of the theoretical formulations and the program used was verified through comparison with available experimental data, and the agreement has proven to be very good. A parametric study has been also carried out to investigate the influence of different material and geometric properties on the behavior of HSC slabs. Influencing factors, such as concrete strength, steel ratio, aspect ratio, and support conditions on the load-deflection characteristics, concrete and steel stresses and strains were investigated.

점토의 구성관계에 대한 내재적인 응력적분 (An Implicit Stress Integration for the Constitutive Relationship of Clays)

  • 오세붕
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.92-98
    • /
    • 1998
  • Nonlinear finite element analyses of one dimensional consolidation problem were performed using an anisotropic hardening constitutive model. For the analyses, the anisotropic hardening elasto-plastic constitutive model based on the generalized isotropic hardening(GIH) rule was implemented into a nonlinear finite element analysis program, PLASTIC. In order to preserve the accuracy of the finite element solution for nonlinear problems, an implicit stress integration algorithm was employed. A consistent tangent moduli could also ensure the quadratic convergence of Newton's method. As a result, the nonlinear solution was accurately calculated and was converged to be asymptotically quadratic. In a consolidation problem, the relationship between load and settlement and between settlement and time vertical was analyzed comparing with results using the Cam-clay type model and the final consolidation settlement and the duration of primary consolidation could be evaluated rigorously using the GIH constitutive model.

  • PDF