• Title/Summary/Keyword: nonlinear finite analysis program

Search Result 387, Processing Time 0.028 seconds

Investigation on R/C Hyperbolic Paraboloid (HP) Saddle Shell Ultimate Behavior (R/C 쌍곡 포물선 '안장' 쉘의 극한 거동 연구(研究))

  • Min, Chang Shik;Kim, Saeng Bin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.11-20
    • /
    • 1993
  • Nonlinear inelastic behavior of an HP saddle shell has been examined by a finite element computer program developed on a Cray Y-MP. The mesh convergence is studied using three progressively refined finite element mesh models, $16{\times}16$, $32{\times}32$ and $64{\times}64$, for the elastic and inelastic analyses. It is shown that the $32{\times}32$ mesh model gives a solution that is very close to that given by the $64{\times}64$ mesh model, thus, showing a convergence. The inelastic analysis shows that the shell has a tremendous capacity to redistribute the stresses. At the ultimate, the concrete cracks and the reinforcement yieldings are spread out all over the shell, indicating that the stress distribution in the shell is approaching that given by the classical membrane theory. The present computer program provides a very useful tool for evaluating the nonlinear ultimate behavior of concrete shells during the design process.

  • PDF

Piecewise exact solution for analysis of base-isolated structures under earthquakes

  • Tsai, C.S.;Chiang, Tsu-Cheng;Chen, Bo-Jen;Chen, Kuei-Chi
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.381-399
    • /
    • 2005
  • Base isolation technologies have been proven to be very efficient in protecting structures from seismic hazards during experimental and theoretical studies. In recent years, there have been more and more engineering applications using base isolators to upgrade the seismic resistibility of structures. Optimum design of the base isolator can lessen the undesirable seismic hazard with the most efficiency. Hence, tracing the nonlinear behavior of the base isolator with good accuracy is important in the engineering profession. In order to predict the nonlinear behavior of base isolated structures precisely, hundreds even thousands of degrees-of-freedom and iterative algorithm are required for nonlinear time history analysis. In view of this, a simple and feasible exact formulation without any iteration has been proposed in this study to calculate the seismic responses of structures with base isolators. Comparison between the experimental results from shaking table tests conducted at National Center for Research on Earthquake Engineering in Taiwan and the analytical results show that the proposed method can accurately simulate the seismic behavior of base isolated structures with elastomeric bearings. Furthermore, it is also shown that the proposed method can predict the nonlinear behavior of the VCFPS isolated structure with accuracy as compared to that from the nonlinear finite element program. Therefore, the proposed concept can be used as a simple and practical tool for engineering professions for designing the elastomeric bearing as well as sliding bearing.

Inelastic Nonlinear Analysis of Arch Truss and Space Truss Structures (아치 트러스 및 공간 트러스 구조의 비탄성 비선형 거동해석)

  • Kim, Kwang-Joong;Jung, Mi-Roo;Kim, Yeon-Tae;Baek, Ki-Youl;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.5
    • /
    • pp.47-58
    • /
    • 2008
  • Spatial structure is an appropriate shape that resists external force only with in-plane force by reducing the influence of bending moment, and it maximizes the effectiveness of structural system. With this character of the spatial structure, generally long span is used. As a result, large deflection is accompanied from the general frame. the structure is apt to result in a large deflection even though this structure experiences a small displacement in absence. Usually, nonlinear analysis in numerical analysis means geometric nonlinearity and material nonlinearity and complex nonlinearity analysis considers both of them. In this study, nonlinear equation of equilibrium considering geometric nonlinearity as per finite element method was applied and also considered the material nonlinearity using the relation of stress-strain in element. It is applied to find unstable result for tracing load-deflection curve in the numerical analysis tech. especially Arc-length method, and result of the analysis was studied by ABAQUS a general purpose of the finite element program. It is found that the present analysis predicts accurate nonlinear behavior of plane and space truss.

  • PDF

Development of a Finite Element Program for Determining Mat Pressure in the Canning Process for a Catalytic Converter (촉매변환기를 캐닝할 때 발생하는 매트의 압력분포 유한요소해석 프로그램의 개발)

  • Chu, Seok-Jae;Lee, Young-Dae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1471-1476
    • /
    • 2011
  • The catalytic converter in the front part of an automobile's exhaust system converts toxic exhaust gas into nontoxic gas. The substrate in the central part of the converter has a circular or oval-shaped cross section and fine lattice-shaped walls. In the canning process, the substrate is wrapped in mats and inserted into a can. During this process, mat pressure is induced, which may cause brittle fracturing in the substrate. In this paper, a finite element program for determining the mat pressure distribution was developed to avoid these fractures. The program was created in Microsoft EXCEL, so the input and output procedures are relatively simple. It was assumed that the substrate is rigid, the mat is material nonlinear, and the can is linear elastic. The can is modeled as a beam element to resist both bending and uniform tension/compression. The number of elements is fixed to 35, and the number of iterations, to 20. The solutions are compared to ABAQUS solutions and found to be in good agreement.

The study on the buckling instability of the expansion tube type crash energy absorber by using the FEM (FEM을 이용한 확관형 충돌에너지 흡수부재의 좌굴불안전성에 관한 연구)

  • Choi, Won-Mok;Jung, Hyun-Sung;Kwon, Tae-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.774-779
    • /
    • 2007
  • The crash energy absorbers used in the trains normally are classified into two types. The first is the structure type, which mainly used in not only the primary structure of train but also the crash energy absorbers at the critical accidents. The second is the module type, which just absorbs the crash energy independently and attached onto the structures of the trains. The expansion tube is widely used as the module type of the crash energy absorbers, especially in the trains that have a heavy mass. Since the crash energy is absorbed by means of expanding the tube in the radial direction, the features of the expansion tube have the uniform load during the compression. As the uniform load remains in sudden impact, the expansion tube is effective to decrease acceleration of passengers when the train accident occur. The buckling instability of the expansion tubes is affected by the boundary conditions, thickness and length of tube. In this study, the effects of the length and thickness of the expansion tubes under the arbitrary load on the buckling are studied using the ABAQUS/standard and ABAQUS/explicit, a commercial finite element analysis program, and then presents the guideline to design the expansion tubes. The analysis processes to compute the buckling load consist of the linear buckling analysis and the nonlinear post-buckling analysis. To analysis the nonlinear post-buckling analysis, the geometry imperfections are introduced by applying the linear buckling modes to nonlinear post-buckling analysis.

  • PDF

Material Nonlinear Analysis of the RC Shells Considering Tension Stiffening Effects (인장강성 효과를 고려한 RC 쉘의 재료비선형 해석)

  • Jin, Chi Sub;Eom, Jang Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.99-107
    • /
    • 1993
  • In this study, material nonlinear finite element program is developed to analyze reinforced concrete shell of arbitrary geometry considering tension stiffening effects. This study is capable of tracing the load-deformation response and crack propagation, as well as determining the internal concrete and steel stresses through the elastic, inelastic and ultimate ranges in one continuous computer analysis. The cracked shear retention factor is introduced to estimate the effective shear modulus including aggregate interlock and dowel action. The concrete is assumed to be brittle in tension and elasto-plastic in compression. The Drucker-Prager yield criterion and the associated flow rule are adopted to govern the plastic behavior of the concrete. The reinforcing bars are considered as a steel layer of equivalent thickness. A layered isoparametric flat finite element considering the coupling effect between the in-plane and the bending action was developed. Mindlin plate theory taking account of transverse shear deformation was used. An incremental tangential stiffness method is used to obtain a numerical solution. Numerical examples about reinforced concrete shell are presented. Validity of this method is studied by comparing with the experimential results of Hedgren and the numerical analysis of Lin.

  • PDF

Prediction of Shear Strength of Reinforced Concrete Deep Beams (철근콘크리트 깊은 보의 전단강도 예측)

  • Cheon Ju Hyun;Kim Tae Hoon;Lee Sang Cheol;Chung Young Soo;Lee Kwang Myong;Shin Hyun Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.532-535
    • /
    • 2004
  • This paper presents a nonlinear finite element analysis procedure for the prediction of shear strength of reinforced concrete deep beams. A computer program, named RCAHESTC(Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile. compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. The proposed numerical method for the prediction of shear strength of reinforced concrete deep beams is verified by comparison with the reliable experimental results.

  • PDF

Inelastic seismic analysis of RC bridge piers including flexure-shear-axial interaction

  • Lee, Do Hyung;Elnashai, Amr S.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.3
    • /
    • pp.241-260
    • /
    • 2002
  • The effect of shear coupled with axial force variation on the inelastic seismic behaviour of reinforced concrete bridge piers is investigated in this paper. For this purpose, a hysteretic axial-shear interaction model was developed and implemented in a nonlinear finite element analysis program. Thus, flexure-shear-axial interaction is simulated under variable amplitude reversed actions. Comparative studies for shear-dominated reinforced concrete columns indicated that a conventional FE model based on flexure-axial interaction only gave wholly inadequate results and was therefore incapable of predicting the behaviour of such members. Analysis of a reinforced concrete bridge damaged during the Northridge (California 1994) earthquake demonstrated the importance of shear modelling. The contribution of shear deformation to total displacement was considerable, leading to increased ductility demand. Moreover, the effect of shear with axial force variation can significantly affect strength, stiffness and energy dissipation capacity of reinforced concrete members. It is concluded that flexure-shear-axial interaction should be taken into account in assessing the behaviour of reinforced concrete bridge columns, especially in the presence of high vertical ground motion.

Nonlinear Finite Element Analysis of High Piers (고강도 철근 콘크리트 고교각의 비선형 유한요소해석)

  • Lee, Heon-Min;Seong, Dae-Jung;Kim, Tae-Hoon;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.490-493
    • /
    • 2006
  • The purpose of this study is to investigate the inelastic behavior of reinforced high-strength concrete bridge columns. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. The increase of concrete strength due to the lateral confining reinforcement has been also taken into account to model the confined high-strength concrete. The proposed numerical method for the inelastic behavior of reinforced high-strength concrete bridge columns is verified by comparison with reliable experimental results.

  • PDF

Earthquake Response Analysis of a RC Bridge employing a Point Hinge Model (포인트 힌지 모델을 적용한 철근콘크리트 교량의 지진응답 해석)

  • 이도형;전종수;박대효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.419-426
    • /
    • 2003
  • Simplified modeling approach for the seismic behavior of a reinforced concrete bridge is investigated in this paper. For this purpose, a hysteretic axial-flexure interaction model was developed and implemented into a nonlinear finite element analysis program. Thus, the seismic response of reinforced concrete bridge piers was evaluated by the simplified point hinge representations. Comparative studies for reinforced concrete bridge piers indicated that the analytical predictions obtained with the new formulations showed a good correlation with experimental results. In addition, seismic response analysis of a reinforced concrete bridge utilizing the simplified point hinge model revealed the adequacy and applicability of the present development.

  • PDF