• Title/Summary/Keyword: nonlinear finite analysis program

Search Result 388, Processing Time 0.035 seconds

Comparisons of Behavioral Characteristics and Seismic Performance of Seismic Isolation Bearing Systems (면진용 교좌장치의 거동 특성과 내진 성능 비교)

  • 한규승;한경봉;박선규
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.79-89
    • /
    • 2000
  • In this paper, the seismic analysis and the modeling techniques have been introduced for aseismic performances assessment, when seismic isolation bearings are applied on a real bridge. Nonlinear time-history analysis is carried out using finite element analysis program. In this study, EI Centro earthquake(1940, N00W), Mexico earthquake(1985, N90W), and earthquake simulation from modified SIMQKE are used as earthquake ground excitations. The seismic response of seismically isolated bridge is compared with that of a bridge using conventional Pot Bearings, after obtaining the displacements of the deck, the deformations of the piers, shear forces and moments of the bottoms of the piers. The analytical analysis results show that seismic isolation bearing, especially seismic isolation bearings with sliding mechanism, could reduce earthquake forces.

Structural Performance Assessment of Damaged Reinforced Concrete Structures (손상된 철근콘크리트 구조물의 구조성능평가)

  • Kim, Tae-Hoon;Kim, Young-Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.19-28
    • /
    • 2011
  • In this study, nonlinear finite element analysis procedures are presented for the structural performance assessment of damaged reinforced concrete structures. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. This paper defines a damage index based on the predicted inelastic behavior of reinforced concrete structures. The proposed numerical method for the structural performance of damaged reinforced concrete structures is verified by comparison with reliable experimental results.

Flexural behavior of prestressed hybrid wide flange beams with hollowed steel webs

  • Han, Sun-Jin;Joo, Hyo-Eun;Choi, Seung-Ho;Heo, Inwook;Kim, Kang Su
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.691-703
    • /
    • 2021
  • In this study, experiments were conducted to evaluate the flexural performance of prestressed hybrid wide flange (PHWF) beams with hollowed steel webs. A total of four PHWF beams were fabricated, where the width and spacing of the steel webs and the presence of cast-in-place (CIP) concrete were set as the main test parameters, and their flexural behavior and crack patterns, and the longitudinal strain distribution in a section with respect to the width and spacing of the steel webs were analyzed in detail. The experiment results showed that, as the ratio of the width to the spacing of the steel webs decreased, the flexural stiffness and strength of the PHWF beams without CIP concrete decreased. In addition, in the case of composite PHWF beam with CIP concrete, fully composite behavior between the precast concrete and the CIP concrete was achieved through the embedded steel member. Finite element analyses were performed for the PHWF beams considering the bond properties between the hollowed steel webs and concrete, and nonlinear flexural analyses were also conducted reflecting the pre-compressive strains introduced only into the bottom flange. From the comparison of the test and analysis results, it was confirmed that the analysis models proposed in this study well evaluated the flexural behavior of PHWF beams with and without CIP concrete.

Nonlinear dynamic analysis of reinforced concrete shell structures

  • Kim, T.H.;Park, J.G.;Choi, J.H.;Shin, H.M.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.685-702
    • /
    • 2010
  • In this paper, a nonlinear finite element procedure is presented for the dynamic analysis of reinforced concrete shell structures. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), was used. A 4-node flat shell element with drilling rotational stiffness was used for spatial discretization. The layered approach was used to discretize the behavior of concrete and reinforcement in the thickness direction. Material nonlinearity was taken into account by using tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach was incorporated. The low-cycle fatigue of both concrete and reinforcing bars was also considered to predict a reliable dynamic behavior. The solution to the dynamic response of reinforced concrete shell structures was obtained by numerical integration of the nonlinear equations of motion using Hilber-Hughes-Taylor (HHT) algorithm. The proposed numerical method for the nonlinear dynamic analysis of reinforced concrete shell structures was verified by comparison of its results with reliable experimental and analytical results.

A Finite Eelement Analysis of Joint Behavior of Rock Masses (암반절리의 거동에 대한 유한요소해석)

  • ;;Kim, Moon Kyum;Hwang, Dae Jin
    • Computational Structural Engineering
    • /
    • v.2 no.4
    • /
    • pp.59-67
    • /
    • 1989
  • Effect of joints which pre-exist in the rock mass on the behavior of underground structures is studied. A finite element program is developed using a constitutive mode for rock masses exhibiting nonlinear anisotropic behavior. The initial loading scheme combined with reduced region of analysis is employed to minimize the problem size. A circular tunnel within rock mass is analyzed and the results are compared with those of elasto-plastic analysis to verify that the program is reasonable. The effect of joint direction is also analyzed in regard to stress relaxation, displacement, and deformation shape. It is concluded that the joint direction has significant influence on the nonlinear behavior of rock masses such that the vicinity of tunnel perpendicular to the direction of the joints is stressed to slide. It is also observed that the circular shape deforms to an elliptical shape with a major axis in the joint direction.

  • PDF

A Nonlinear Finite Element Analysis to Study the Flexural Behavior of Reinforced Concrete Walls (철근콘크리트 벽체의 휨거동에 관한 비선형 유한요소해석)

  • Han Min Ki;Park Wan Shin;Han Byung Chan;Hwang Sun Kyoung;Choi Chang Sik;Yun Hyun Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.520-523
    • /
    • 2004
  • The finite element method(FEM) models were developed for the reinforced concrete flexural walls and analysed under constant axial and monotonic lateral load using ABAQUS. The major objective of the present study is to determine if the ABAQUS finite element program can be used to accurately model the post-cracked mode of failure in plastic regions of walls, and, if so, to develop practical failure criteria in the plastic range of the material response. The research comprises constitutive models to represent behavior of the materials that compose a wall on the basis of experimental data, development of techniques that are appropriate for analysis of reinforced concrete structures, verification, and calibration of the global model for reinforced concrete walls of increasing complexity. Results from the analyses of these FEM models offers significant insight into the flexural behavior of benchmark data.

  • PDF

Geometrically Nonlinear Analysis of Plates Subjected to Uniaxial Compression by Finite Strip Method (일축(一軸) 압축(壓縮)을 받는 판(板)의 유한대판법(有限帶板法)에 의한 기하학적(幾何學的) 비선형(非線型) 해석(解析))

  • Lee, Yong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.107-115
    • /
    • 1985
  • For the finite deflection analysis of plates with initial deflections subjected to uniaxial compression, the formulation of incremental finite strip method is made and has been incorporated into a computer program. A new in plane displacement function varying along the load: direction has been derived from the out-of-plane displacement function by considering the curvature of a plate. Either incremental load type analysis or incremental displacement type analysis may be selected to solve incremental equibrium equations in the program. The following results have been obtained: 1. Incremental displacement type analysis is superior to incremental load type analysis in that the former converges more rapidly than the latter. 2. The finite strip method using the new displacement function gives as accurate results as analytical method and other finite element methods.

  • PDF

Nonlinear Analysis of Concrete Using ABAQUS User Material(UMAT) (ABAQUS User Material(UMAT)을 이용한 콘크리트 비선형 해석)

  • 조병완;김장호;김영진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.145-152
    • /
    • 2003
  • This paper develops a relatively comprehensive and sophisticated constitutive model of concrete for finite element analysis of concrete structures. The present model accounts for the hydrostatic pressure sensitivity and Lode angle dependence behavior of concrete, not only in its strength criterion, but also in its hardening characteristics. The implementation is carried out through incorporating the developed concrete model in User Subroutine Material(UMAT) of the general-purpose FE program ABAQUS(v.5.8). It is found that the model can sufficiently predict the hardening as well as the softening behaviour of concrete under high confining pressure.

  • PDF

Numerical Study on Long-term Behavior of Flat Plate Subjected to In-Plane Compressive and Transverse Loads (바닥하중과 압축력을 받는 플랫 플레이트의 장기거동에 대한 해석적 연구)

  • 최경규;박홍근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.611-616
    • /
    • 2000
  • Numerical studies were carried out to investigate the long-term behavior of late plates in basement, subjected to combined in-plane compressive and transverse loads. For the numerical studies, a computer program of nonlinear finite element analysis was modified by adding function of creep and shrinkage analysis. This numerical method was verified by comparison with the existing experiments. Parametric studies were performed to investigate the strength variations of flat plates with three parameters; 1) loading sequence of floor load, compression and time 2) uniaxial an biaxial compression and 3) the ratio of dead to live load.

  • PDF

Nonlinear Analysis of Concrete Using K & C Model (K &C 모델을 이용한 콘크리트 비선형 해석)

  • 김영진;김장호;조병완
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.409-414
    • /
    • 2003
  • This paper develops a relatively comprehensive and sophisticated constitutive model of concrete for finite element analysis of concrete structures. The present model accounts for the hydrostatic pressure sensitivity and Lode angle dependence behavior of concrete, not only in its strength criterion, but also in its hardening characteristics. The implementation is carried out through incorporating the developed concrete model in User Subroutine Material(UMAT) of the general-purpose FE program ABAQUS(v.5.8). It is found that the model can sufficiently predict the hardening as well as the softening behaviour of concrete under high confining pressure.

  • PDF