• Title/Summary/Keyword: nonlinear earthquake response

Search Result 545, Processing Time 0.022 seconds

Peak floor acceleration prediction using spectral shape: Comparison between acceleration and velocity

  • Torres, Jose I.;Bojorquez, Eden;Chavez, Robespierre;Bojorquez, Juan;Reyes-Salazar, Alfredo;Baca, Victor;Valenzuela, Federico;Carvajal, Joel;Payaan, Omar;Leal, Martin
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.551-562
    • /
    • 2021
  • In this study, the generalized intensity measure (IM) named INpg is analyzed. The recently proposed proxy of the spectral shape named Npg is the base of this intensity measure, which is similar to the traditional Np based on the spectral shape in terms of pseudo-acceleration; however, in this case the new generalized intensity measure can be defined through other types of spectral shapes such as those obtained with velocity, displacement, input energy, inelastic parameters and so on. It is shown that this IM is able to increase the efficiency in the prediction of nonlinear behavior of structures subjected to earthquake ground motions. For this work, the efficiency of two particular cases (based on acceleration and velocity) of the generalized INpg to predict the peak floor acceleration demands on steel frames under 30 earthquake ground motions with respect to the traditional spectral acceleration at first mode of vibration Sa(T1) is compared. Additionally, a 3D reinforced concrete building and an irregular steel frame is used as a basis for comparison. It is concluded that the use of velocity and acceleration spectral shape increase the efficiency to predict peak floor accelerations in comparison with the traditional and most used around the world spectral acceleration at first mode of vibration.

Dynamic Analysis of Building Structures with Foundation Uplift (기초의 uplift를 고려한 건축구조물의 동적해석)

  • ;;Song, Yoon Hwan
    • Computational Structural Engineering
    • /
    • v.1 no.1
    • /
    • pp.103-112
    • /
    • 1988
  • In this study, the earthquake response of building structures with foundation uplift was investigated. The Winkler foundation model and two-spring model are widely used to represent the interaction between foundation mat and soil. While the analysis using the Winkler foundation model results in more accurate prediction, it requires a complex procedure and longer computation time. In this study, an equivalent two-spring model(S model) is proposed. The S model can represent the Winkler foundation model more accurately and the analysis using the S model is simpler and more effective. The S model is derived by simplifying the nonlinear moment-rotation relationship of foundation mat. The dynamic responses predicted by the S model gave a good agreement to those of the Winkler foundation model.

  • PDF

Reliability-based design of semi-rigidly connected base-isolated buildings subjected to stochastic near-fault excitations

  • Hadidi, Ali;Azar, Bahman Farahmand;Rafiee, Amin
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.701-721
    • /
    • 2016
  • Base isolation is a well-established passive strategy for seismic response control of buildings. In this paper, an efficient framework is proposed for reliability-based design optimization (RBDO) of isolated buildings subjected to uncertain earthquakes. The framework uses reduced function evaluations method, as an efficient tool for structural reliability analysis, and an efficient optimization algorithm for optimal structural design. The probability of failure is calculated considering excessive base displacement, superstructure inter-storey drifts, member stress ratios and absolute accelerations of floors of the isolated building as failure events. The behavior of rubber bearing isolators is modeled using nonlinear hysteretic model and the variability of future earthquakes is modeled by applying a probabilistic approach. The effects of pulse component of stochastic near-fault ground motions, fixity-factor of semi-rigid beam-to-column connections, values of isolator parameters, earthquake magnitude and epicentral distance on the performance and safety of semi-rigidly connected base-isolated steel framed buildings are studied. Suitable RBDO examples are solved to illustrate the results of investigations.

Simplified procedure for seismic analysis of base-isolated structures

  • Serror, Mohammed H.;El-Gazzar, Sherif O.;Mourad, Sherif A.
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1091-1111
    • /
    • 2015
  • Base isolation is an effective method for protecting structures against earthquake hazard. It elongates the period of vibration and introduces supplemental damping to the structural system. The stiffness, damping and displacement are coupled forcing the code seismic design procedure to be unnecessarily complicated. In addition, the force reduction factor -a key parameter in the design procedurehas not been well addressed by seismic design codes at the high levels of damping due to the pronounced difference between pseudo and actual accelerations. In this study, a comparison has been conducted to evaluate eight different methods, in the literature, for calculating the force reduction factor due to damping. Accordingly, a simplified seismic analysis procedure has been proposed based on the well documented N2 method. Comprehensive analysis has been performed for base-isolated structure models for direct application and verification of the proposed procedure. The results have been compared with those of the European code EC8, the nonlinear time history analysis and investigations in the literature, where good agreement has been reported. In addition, a discussion has been elaborated for the resulted response of the base-isolated structure models with respect to the dynamic characteristics of the base isolation system.

Pounding-involved response of isolated and non-isolated buildings under earthquake excitation

  • Mahmoud, Sayed;Jankowski, Robert
    • Earthquakes and Structures
    • /
    • v.1 no.3
    • /
    • pp.231-252
    • /
    • 2010
  • Previous research on pounding between seismically isolated buildings during earthquakes has been focused on impacts at the bases of structures and the effect of simultaneous interactions at the bases and at the superstructures has not been studied in details. In this paper, the seismic responses of adjacent buildings supported on different or similar base systems considering impacts between bases and superstructures are numerically investigated. The study is carried out in three parts for the two types of adjacent buildings: (i) both structures have fixed bases; (ii) one structure has fixed base and the other is seismically isolated and (iii) both structures have base isolation systems. The results of the study indicate that the pounding-involved responses of the buildings depend mainly on the type of structural base systems and on the structural parameters of both buildings. For the base-isolated building, the variation of the peak accelerations and displacements of the storeys have been found to be relatively low. On the other hand, significant differences have been observed for the fixed base building. The results of the parametric study conducted for different values of the gap size between colliding structures show the reduction in the peak base displacements as the gap distance decreases.

Protocol for testing of cold-formed steel wall in regions of low-moderate seismicity

  • Shahi, Rojit;Lam, Nelson;Gad, Emad;Wilson, John
    • Earthquakes and Structures
    • /
    • v.4 no.6
    • /
    • pp.629-647
    • /
    • 2013
  • Loading protocols have been developed for quasi-static cyclic testing of structures and components. However, it is uncertain if protocols developed for conditions of intense ground shaking in regions of high seismicity would also be applicable to regions of low-moderate seismicity that are remote from the tectonic plate boundaries. This study presents a methodology for developing a quasi-static cyclic displacement loading protocol for experimental bracing evaluation of cold-formed steel stud shear walls. Simulations presented in the paper were based on conditions of moderate ground shaking (in Australia). The methodologies presented are generic in nature and can be applied to other regions of similar seismicity conditions (which include many parts of China, Korea, India and Malaysia). Numerous response time histories including both linear and nonlinear analyses have been generated for selected earthquake scenarios and site classes. Rain-flow cycle counting method has been used for determining the number of cycles at various ranges of normalized displacement amplitude. It is found that the number of displacement cycles of the loading protocol increases with increasing intensity of ground shaking (associated with a longer return period).

Comparing fuzzy type-1 and -2 in semi-active control with TMD considering uncertainties

  • Ramezani, Meysam;Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.155-171
    • /
    • 2019
  • In this study, Semi-active Tuned Mass Dampers (STMDs) are employed in order to cover the prevailing uncertainties and promote the efficiency of the Tuned Mass Dampers (TMDs) to mitigate undesirable structural vibrations. The damping ratio is determined using type-1 and type-2 Fuzzy Logic Controllers (T1 and T2 FLC) based on the response of the structure. In order to increase the efficiency of the FLC, the output membership functions are optimized using genetic algorithm. The results show that the proposed FLC can reduce the sensitivity of STMD to excitation records. The obtained results indicate the best operation for T1 FLC among the other control systems when the uncertainties are neglected. According to the irrefutable uncertainties, three supplies for these uncertainties such as time delay, sensors measurement noises and the differences between real and software model, are investigated. Considering these uncertainties, the efficiencies of T1 FLC, ground-hook velocity-based, displacement-based and TMD reduce significantly. The reduction rates for these algorithms are 12.66%, 26.43%, 20.98% and 21.77%, respectively. However, due to nonlinear behavior and considering a range of uncertainties in membership functions, T2 FLC with 7.2% reduction has robust performance against uncertainties compared to other controlling systems. Therefore, it can be used in actual applications more confidently.

Application of self-centering wall panel with replaceable energy dissipation devices in steel frames

  • Chao, Sisi;Wu, Hanheng;Zhou, Tianhua;Guo, Tao;Wang, Chenglong
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.265-279
    • /
    • 2019
  • The self-centering capacity and energy dissipation performance have been recognized critically for increasing the seismic performance of structures. This paper presents an innovative steel moment frame with self-centering steel reinforced concrete (SRC) wall panel incorporating replaceable energy dissipation devices (SF-SCWD). The self-centering mechanism and energy dissipation mechanism of the structure were validated by cyclic tests. The earthquake resilience of wall panel has the ability to limit structural damage and residual drift, while the energy dissipation devices located at wall toes are used to dissipate energy and reduce the seismic response. The oriented post-tensioned strands provide additional overturning force resistance and help to reduce residual drift. The main parameters were studied by numerical analysis to understand the complex structural behavior of this new system, such as initial stress of post-tensioning strands, yield strength of damper plates and height-width ratio of the wall panel. The static push-over analysis was conducted to investigate the failure process of the SF-SCWD. Moreover, nonlinear time history analysis of the 6-story frame was carried out, which confirmed the availability of the proposed structures in permanent drift mitigation.

Bi-linear Stress-Strain Curves for Considering Cyclic Hardening Behavior of Materials in the Nonlinear FE Analysis under Seismic Loading Conditions (지진하중 조건의 비선형 유한요소해석에서 반복경화 거동 고려를 위한 Bi-linear 응력-변형률 곡선)

  • Jeong, Hyun Joon;Kim, Jin Weon;Kim, Jong Sung;Koo, Gyeong Hoi
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.59-68
    • /
    • 2018
  • This study compares true stress-true strain curves obtained by tensile tests of various piping materials with bi-linear stress-strain approximation suggested in the JSME Code Case(CC) Draft, a guideline for piping seismic inelastic response analysis. Based on the comparisons, the reliability of the bi-linear approximation is evaluated. It is found that bi-linear stress-strain curve of TP316 stainless steel is in good agreement with its true stress-true strain curve. However, Bi-linear stress-strain curves of TP304 stainless steel and carbon steels determined by the approximation cannot appropriately estimate their stress-strain behavior. Accordingly new bi-linear approximations for carbon steels and low-alloy steels are proposed. The proposed bi-linear approximations for carbon and low-alloy steels, which include the temperature effect on strength and hardening of material, estimate their stress-strain behavior reasonably well.

Basin edge effect on industrial structures damage pattern at clayey basins

  • Khanbabazadeh, Hadi;Zulfikar, Abdullah C.;Yesilyurt, Ali
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.575-585
    • /
    • 2020
  • In this numerical study, the 2D dynamic behavior of a clayey basin and its effect on damage pattern over basin edge are investigated. To attain this goal, a fully nonlinear time domain analysis method has been applied. Then, the fragility curves of the considered two typical industrial structures for that certain point are estimated using the acceleration time histories recorded at each surface point. The results show that the use of the damage related parameters in site effect analyses, instead of amplification curves, can yield more realistic estimation of the basin dynamic response. In a distance about 150 m from outcrop at the basin edge, the differences between fragility curves increase when increasing the distance from outcrop with respect to the reference rock site. Outside this region and towards the basin center, they tend to occur in rather single curves. Furthermore, to connect the structural damage to the basin edge effect, the earthquake demand value at different points for two typical structures was evaluated. It was seen that the probability of occurrence of damage increases over 250 m from outcrop, while the effect of the basin edge was limited to 150 m in case of the basin edge evaluation by using fragility curves.