• Title/Summary/Keyword: nonlinear dynamic system

Search Result 1,483, Processing Time 0.023 seconds

A study on the dynamic modeling of driving system of a heavy industrial vehicle (중장비 구동체계의 제어용 동적 모델에 관한 연구)

  • 홍성욱;강민식;이종원;김광준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.222-233
    • /
    • 1987
  • A dynamic modeling procedure for developing a control model of the driving system of a heavy industrial vehicle is presented. The dynamic model is derived by applying generalized Lagrangian equations to each component of the system and imposing kinematic relations between components as constraints. In order to obtain the control model, a few assumptions are made for the simplification of the nonlinear and complicated model, which is justified by the comparison of the simulation results of the original full nonlinear model and the simplified control model.

Applied AI neural network dynamic surface control to nonlinear coupling composite structures

  • ZY Chen;Yahui Meng;Huakun Wu;ZY Gu;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.52 no.5
    • /
    • pp.571-581
    • /
    • 2024
  • After a disaster like the catastrophic earthquake, the government have to use rapid assessment of the condition (or damage) of bridges, buildings and other infrastructures is mandatory for rapid feedbacks, rescue and post-event management. This work studies the tracking control problem of a class of strict-feedback nonlinear systems with input saturation nonlinearity. Under the framework of dynamic surface control design, RBF neural networks are introduced to approximate the unknown nonlinear dynamics. In order to address the impact of input saturation nonlinearity in the system, an auxiliary control system is constructed, and by introducing a class of first-order low-pass filters, the problems of large computation and computational explosion caused by repeated differentiation are effectively solved. In response to unknown parameters, corresponding adaptive updating control laws are designed. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage. Simulation results of linear and nonlinear structures show that the proposed method is able to identify structural parameters and their changes due to damage and unknown excitations. Therefore, the goal is believed to achieved in the near future by the ongoing development of AI and control theory.

Modeling and Control of VSI type FACTS controllers for Power System Dynamic Stability using the current injection method

  • Park, Jung-Soo;Jang, Gil-Soo;Son, Kwang-M.
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.495-505
    • /
    • 2008
  • This paper describes modeling Voltage Sourced Inverter (VSI) type Flexible AC Transmission System (FACTS) controllers and control methods for power system dynamic stability studies. The considered FACTS controllers are the Static Compensator (STATCOM), the Static Synchronous Series Compensator (SSSC), and the Unified Power Flow Controller (UPFC). In this paper, these FACTS controllers are derived in the current injection model, and it is applied to the linear and nonlinear analysis algorithm for power system dynamics studies. The parameters of the FACTS controllers are set to damp the inter-area oscillations, and the supplementary damping controllers and its control schemes are proposed to increase damping abilities of the FACTS controllers. For these works, the linear analysis for each FACTS controller with or without damping controller is executed, and the dynamic characteristics of each FACTS controller are analyzed. The results are verified by the nonlinear analysis using the time-domain simulation.

Nonlinear Time Series Analysis of Biological Chaos (생체 카오스의 비선형 시계열 데이터 분석)

  • 이병채;이명호
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.347-354
    • /
    • 1994
  • This paper describes a diagnostic protocol of nonlinear dynamic characteristics of biological system using chaos theory. An integrated chaos analysis system for the diagnosis of biological system was designed. We suggest a procedure of attractor reconstruction for reliable qualitative and quantitative analysis. The effect of autonomic nervous system activity on heart rate variability with power spectral analysis and its characteristics of chaotic attractors are investigated. The results show the applicability to evaluate the mental and physical conditions using nonlinear characteristics of biological signal.

  • PDF

Dynamic analysis of spindle system with magnetic coupling(1) (마그네틱 커플링을 장착한 축계의 동적해석(I))

  • Kim, S.K.;Lee, S.J.;Lee, J.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.99-105
    • /
    • 1994
  • In this study, the transverse and the torsional vibration analyses of a precision dynamic drive system with the magnetic coupling are accomplished. The force of the magnetic coupling is regarded as an equivalent transverse stiffness, which has a nonlinearity as a function of the gap and the eccentricity between a driver and a follower. Such an equivalent stiffness is calculated by and determined by the physical law and the calculated equivalent stiffness is modelled as the truss element. The form of the torque function transmitted through the magnetic coupling is a sinusoidal and such an equivalent angular stiffness, which represents the torque between a driver and a follower, is modelled as a nonlinear spring. The main spindle connected to a follower is assumed to a rigid body. And then finally we have the nonlinear partial differential equation with respect to the angular displacements. Through the procedure mentioned above, we accomplish the results of the torsional vibration analysis in a spindle system with the magnetic coupling.

  • PDF

Dynamic Characteristics and Stability of an Infrared Search and Track (적외선 탐색 및 추적장비의 동적 특성 및 안정화)

  • Choi, Jong-Ho;Park, Yong-Chan;Lee, Joo-Hyoung;Choi, Young-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.116-124
    • /
    • 2008
  • Current paper investigates the dynamic behavior and stability of an infrared search and track subjected to external disturbance having gimbal structure with three rotating axes keeping constant angular velocity in the azimuth direction. Euler-Lagrange equation is applied to derive the coupled nonlinear dynamic equation of motion of infrared search and track and the characteristics of dynamic coupling are investigated. Two equilibrium points with small variations from the nonlinear coupling system are derived and the specific condition from which a coupled equation can be three independent equations is derived. Finally, to examine the stability of system, Lyapunov direct method was used and system stability and stability boundaries are investigated.

ESTIMATION OF RIDE QUALITY OF A PASSENGER CAR WITH NONLINEAR SUSPENSION

  • Cho, S.J.;Choi, Y.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.103-109
    • /
    • 2007
  • The nonlinear characteristics of a suspension is directly related to the ride quality of a passenger car. In this study, the nonlinear characteristics of a spring and a damper of a passenger car is analyzed by dynamic experiments using the MTS single-axial testing machine. Also, a mathematical nonlinear dynamic model for the suspension is devised to estimate the ride quality using the K factor. And the effect on the variation of the parameters of the suspension is examined. The results showed that the dynamic viscosity of the oil in a damper was the parameter that most influeced the ride quality of a passenger car for the ride quality of a passenger car.

Nonlinear Response Phenomena of a Randomly Excited Vibration Absorber System (불규칙적으로 가진되는 동흡진기계의 비선형응답현상)

  • Cho, Duk-Sang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.2
    • /
    • pp.141-147
    • /
    • 2000
  • The nonlinear response statistics of an autoparameteric system under broad-band random excitation is investigated. The specific system examined is a vibration absorber system with internal resonance, which is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. The Fokker-Planck equations is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian closure method the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. The jump phenomenon was found by Gaussian closure method under random excitation.

  • PDF

Nonlinear behavior of concrete gravity dams and effect of input spatially variation

  • Mirzabozorg, H.;Kianoush, R.;Varmazyari, M.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.365-377
    • /
    • 2010
  • In the present article, effect of non-uniform excitation due to spatially variation of seismic input on nonlinear response of concrete gravity dams is considered. The reservoir is assumed compressible. Isotropic damage mechanics approach is used to model static and dynamic nonlinear behavior of mass concrete in 2D space. The validity of utilized nonlinear model is considered using available theoretical results under static and dynamic conditions. The tallest monolith of Pine Flat dam is selected as a case study. Two cases are analyzed for considering the effect of limited wave propagation velocity on seismic behavior of the dam-reservoir system in which travelling velocities are chosen as 2000 m/s and infinity. It is found that tensile damage in neck and toe regions and also, in the vicinity of the base increase when the system is excited non-uniformly.

Flow-induced instability and nonlinear dynamics of a tube array considering the effect of a clearance gap

  • Lai, Jiang;Sun, Lei;Li, Pengzhou
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1650-1657
    • /
    • 2019
  • Fluidelastic instability and nonlinear dynamics of tube bundles is a key issue in a steam generator. Especially, once the post-instability motion of the tube becomes larger than the clearance gap to other tubes, effective contact or impact between the tubes under consideration and the other tube inevitable. There is seldom theoretical analysis to the nonlinear dynamic characteristics of a tube array in two-phase flow. In this paper, experimental and numerical studies were utilized to obtain the critical velocity of the flow-induced instability of a rotated triangular tube array. The calculation results agreed well with the experimental data. To explore the post-instability dynamics of the tube array system, a Runge-Kutta scheme was used to solve the nonlinear governing equations of tube motion. The numerical results indicated that, when the flow pitch velocity is larger than the critical velocity, the tube array system is undergoing a limit cycle motion, and the dynamic characteristics of the tube array are almost similar for different void fractions.