• Title/Summary/Keyword: nonlinear dynamic system

Search Result 1,476, Processing Time 0.026 seconds

A Study on Vibration Control Performance of Macpherson Type Semi-Active Suspension System (맥퍼슨 타입 반 능동 현가장치의 진동제어 성능 고찰)

  • Dutta, Saikat;Han, Chulhee;Lee, TaeHoon;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.157-164
    • /
    • 2016
  • The paper studies a comparison analysis of semi-active control strategies for a Macpherson strut type suspension system consisting of MR(magneto-rheological) damper. As a first step, in order to formulate governing, a dynamic full model of a Macpherson strut is developed considering the kinematics. The nonlinear equation of motion of the strut is then linearized around the equilibrium point. A new adaptive moving sliding model controller is developed for fast response of the system. A newly proposed adaptive moving sliding mode control strategy is then compared with conventional sliding mode controller and skyhook controller. The comparison is made for two different types of road inputs; bump and random road profiles showing superior vibration control performance in time and frequency domains.

Design of $H_{\infty}$Controller for the inverted pendulum system (도립진자 시스템의 $H_{\infty}$ 제어기 설계)

  • Seo, Kang-Myun;Kang, Moon-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1796-1803
    • /
    • 2006
  • This Paper describes a systematic method for designing the $H_{\infty}$ controller for the inverted pendulum which is a nonlinear and single-input double-outputs system. In particular, the open-loop system is conbined with a pre-filter to shape the open-loop transfer function for the sensitivity function ind the complementary sensitivity function to be kept the desirable frequency characteristics. Consequently, the loop shaping technique of the open-loop transfer function reduces the impacts of the model uncertainties, measurement noises and exogenous disterbances on the dynamic characteristics of the inverted pendulum. The results of simulation and experiment show the efficiency of the proposed control method comparing with conventional PID control method.

Unknown-Parameter Identification for Accurate Control of 2-Link Manipulator using Dual Extended Kalman Filter (2링크 매니퓰레이터 제어를 위한 듀얼 확장 칼만 필터 기반의 미지 변수 추정 기법)

  • Seung, Ji Hoon;Park, Jung Kil;Yoo, Sung Goo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.53-60
    • /
    • 2018
  • In this paper, we described the unknown parameter identification using Dual Extended Kalman Filter for precise control of 2-link manipulator. 2-link manipulator has highly non-linear characteristic with changed parameter thought tasks. The parameter kinds of mass and inertia of system is important to handle with the manipulator robustly. To solve the control problem by estimating the state and unknown parameters of the system through the proposed method. In order to verify the performance of proposed method, we simulate the implementation using Matlab and compare with results of RLS algorithm. At the results, proposed method has a better performance than those of RLS and verify the estimation performance in the parameter estimation.

A Perception Based Active Matrix Decoder with Virtual Source Location Information (가상 음원 위치 정보를 이용한 능동 메트릭스 디코더)

  • Moon, Han-Gil
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.18-24
    • /
    • 2010
  • In this paper, a new matrix decoding system using vector based Virtual Source Location Information (VSLI) is proposed as an alternative to the conventional Dolby Pro logic II/IIx system for reconstructing multi-channel output signals from matrix encoded two channel signals, Lt/Rt. This new matrix decoding system is composed of passive decoding part and active part. The passive part makes crude multi-channel signals using linear combination of the two encoded signals(Lt/Rt) and the active part enhances each channel regarding to the virtual source which is emergent in each inter channel. Since the virtual sources are related to the perceptual sound images in virtual sound field, the reconstructed multi-channel sound results in good dynamic perception and stable image localization. Moreover, the good channel separation is maintained with nonlinear trigonometric enhancing function.

A Study on the Audio Compensation System (음향 보상 시스템에 관한 연구)

  • Jeoung, Byung-Chul;Won, Chung-Sang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.509-517
    • /
    • 2013
  • In this paper, we researched a method that makes a good acoustic-speech system using a digital signal processing technique with dynamic microphone as a transducer. Good acoustic-speech system should deliver the original sound input to electric signal without distortion. By measuring the frequency response of the microphone, adjustment factors are obtained by comparing measured data and standard frequency response of microphone for each frequency band. The final sound levels are obtained using the developed adjustment factors of frequency responses from the microphone and speaker to match the original sound levels using the digital signal processing technique. Then, we minimize the changes in the frequency response and level due to the variation of the distance from source to microphone, where the frequency responses were measured according to the distance changes.

The Effect of Internal Flow on Vortex-Induced Vibration of Marine Riser (Riser의 내부유체 흐름이 소용돌이로 인한 Riser 동적반응에 미치는 영향)

  • Hong, Nam-Seeg;Hsiang Wang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.2
    • /
    • pp.198-208
    • /
    • 1995
  • Combining Iwan-Blevin's model into the approximated form of the nonlinear model derived for the dynamic analysis of the riser system with the inclusion of internal flow, current-vortex model is developed to investigate the effect of internal flow on vortex-induced vibration due to inline current The riser system includes a steadly flow inside the pipe which is modeled as an extensible or inextensible tubular beam. Galerkin's finite element approximation are implemented to derive the matrix equation of equilibrium for the finite element system. The investigations of the effect of internal flow on vibration due to inline current are performed according to the change of various parameters such as top tension, infernal flow velocity. current velocity, and so on. It is found that the effect of internal flow on vibration due to vortex shedding can be controlled by the increase of top tension. However, careful consideration has to be given, in design point in order to avoid the resonance band occurding near vortex shedding frequency, particularly for the long riser.

  • PDF

Multi-Agent for Traffic Simulation with Vehicle Dynamic Model I : Development of Traffic Environment (차량 동역학을 이용한 멀티에이전트 기반 교통시뮬레이션 개발 I : 교통 환경 개발)

  • 조기용;권성진;배철호;서명원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.125-135
    • /
    • 2004
  • The validity of simulation has been well-established for decades in areas such as computer and communication system. Recently, the technique has become entrenched in specific areas such as transportation and traffic forecasting. Several methods have been proposed for investigating complex traffic flows. However, the dynamics of vehicles and their driver's characteristics, even though it is known that they are important factors for any traffic flow analysis, have never been considered sufficiently. In this paper, the traffic simulation using a multi-agent approach with considering vehicle dynamics is proposed. The multi-agent system is constructed with the traffic environment and the agents of vehicle and driver. The traffic environment consists of multi-lane roads, nodes, virtual lanes, and signals. To ensure the fast calculation, the agents are performed on the based of the rules to regulate their behaviors. The communication frameworks are proposed for the agents to share the information of vehicles' velocity and position. The model of a driver agent which controls a vehicle agent is described in the companion paper. The vehicle model contains the nonlinear subcomponents of engine, torque converter, automatic transmission, and wheels. The simulation has proceeded for an interrupted and uninterrupted flow model. The result has shown that the driver agent performs human-like behavior ranging from slow and careful to fast and aggressive driving behavior, and that the change of the traffic state is closely related with the distance and the signal delay between intersections. The system developed shows the effectiveness and the practical usefulness of the traffic simulation.

Moving Mass Actuated Reentry Vehicle Control Based on Trajectory Linearization

  • Su, Xiao-Long;Yu, Jian-Qiao;Wang, Ya-Fei;Wang, Lin-lin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.247-255
    • /
    • 2013
  • The flight control of re-entry vehicles poses a challenge to conventional gain-scheduled flight controllers due to the widely spread aerodynamic coefficients. In addition, a wide range of uncertainties in disturbances must be accommodated by the control system. This paper presents the design of a roll channel controller for a non-axisymmetric reentry vehicle model using the trajectory linearization control (TLC) method. The dynamic equations of a moving mass system and roll control model are established using the Lagrange method. Nonlinear tracking and decoupling control by trajectory linearization can be viewed as the ideal gain-scheduling controller designed at every point along the flight trajectory. It provides robust stability and performance at all stages of the flight without adjusting controller gains. It is this "plug-and-play" feature that is highly preferred for developing, testing and routine operating of the re-entry vehicles. Although the controller is designed only for nominal aerodynamic coefficients, excellent performance is verified by simulation for wind disturbances and variations from -30% to +30% of the aerodynamic coefficients.

Photonic Mixing Based Microcellular System Operating in Millimeter-wave Band (광믹싱을 사용한 밀리미터파 마이크로 셀룰라 시스템)

  • Kim, Yeon-Kyu;Park, Hung-Su;Yang, Hoon-Gee
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.8
    • /
    • pp.54-61
    • /
    • 1999
  • This paper proposes a new optic link structure applicable to broad-band wireless access microcellularsystem servicing in the millimeter wave frequency band. The proposed structure utilizes photonic mixing by exploiting the nonlinear property of EOMs, which leads to the frequency up-conversion at the CS and thus, electrical mixing at a BS is not required. Moreover, via transmitting an additional optical millimeter wave carrier into the Bs, the dispenses with an active optic source, which miniaturizes the BS. We analyze CNR, IM3/C in the downlink and SFDR in the uplink. Through simulation using the typical parameter values we also show the feasibility of the proposed system based on the requirements in the current microcellular system.

  • PDF

Seismic behavior of liquid storage tanks with 2D and 3D base isolation systems

  • Kilic, Samet;Akbas, Bulent;Shen, Jay;Paolacci, Fabrizio
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.627-644
    • /
    • 2022
  • In past major earthquakes (1994 Northridge, 1995 Kobe, Chi-Chi 1999, Kocaeli 1999), significant damages occurred in the liquid storage tanks. The basic failure patterns were observed to be the buckling of the tank wall and uplift of the anchorage system. The damages in the industrial facilities and nuclear power plants have caused the spread of toxic substances to the environment and significant fires. Seismic isolation can be used in liquid storage tanks to decouple the structure and decrease the structural demand in the superstructure in case of ground shaking. Previous studies on the use of seismic isolation systems on liquid storage tanks show that an isolation system reduces the impulsive response but might slightly increase the convective one. There is still a lack of understanding of the seismic response of seismically isolated liquid storage tanks considering the fluid-structure interaction. In this study, one broad tank, one medium tank, and one slender tank are selected and designed. Two- and three-dimensional elastomeric bearings are used as seismic isolation systems. The seismic performance of the tanks is then investigated through nonlinear dynamic time-history analyses. The effectiveness of each seismic isolation system on tanks' performance was investigated. Isolator tension forces, modal analysis results, hydrodynamic stresses, strains, sloshing heights and base shear forces of the tanks are compared. The results show that the total base shear is lower in 3D-isolators compared to 2D-isolators. Even though the tank wall stresses, and strains are slightly higher in 3D-isolators, they are more efficient to prevent the tension problem.