• Title/Summary/Keyword: nonlinear dynamic system

Search Result 1,476, Processing Time 0.025 seconds

Chaotic Predictability for Time Series Forecasts of Maximum Electrical Power using the Lyapunov Exponent

  • Park, Jae-Hyeon;Kim, Young-Il;Choo, Yeon-Gyu
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.369-374
    • /
    • 2011
  • Generally the neural network and the Fuzzy compensative algorithms are applied to forecast the time series for power demand with the characteristics of a nonlinear dynamic system, but, relatively, they have a few prediction errors. They also make long term forecasts difficult because of sensitivity to the initial conditions. In this paper, we evaluate the chaotic characteristic of electrical power demand with qualitative and quantitative analysis methods and perform a forecast simulation of electrical power demand in regular sequence, attractor reconstruction and a time series forecast for multi dimension using Lyapunov Exponent (L.E.) quantitatively. We compare simulated results with previous methods and verify that the present method is more practical and effective than the previous methods. We also obtain the hourly predictability of time series for power demand using the L.E. and evaluate its accuracy.

Decentralized Control of Robot Manipulator Using the RBF Neural Network (RBF 신경망을 이용한 로봇 매니퓰레이터의 분산제어)

  • Won, Seong-Un;Kim, Yeong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.657-660
    • /
    • 2003
  • Control of multi-link robot arms is a very difficult problem because of the highly nonlinear dynamics. Decentralized control scheme is developed for control of robot manipulators based on RBF(Radial Basis Function) Neural Networks. RBF Neural Networks is used to approximate the coupling forces among the joints, coriolis force, centrifugal force, gravitational force, and frictional force. The compensation controller is also proposed to estimate the bound of approximation error so that the chattering effect of the control effort can be reduced. The proposed scheme does not require an accurate manipulator dynamic, and it is proved that closed-loop system is asymptotic stable despite the gross robot parameter variations. Numerical simulations for two-link robot manipulator are included to show the effectiveness of controller.

  • PDF

Look-ahead Preview Control with Limited Bandwidth Active Suspension - Application to Tracked Vehicle Systems (제한 대역폭을 가진 능동 현가 장치에 대한 Look-ahead 예견 제어-궤도 차량에의 응용)

  • Ryu, Seong-Pil;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.209-212
    • /
    • 2005
  • The look-ahead preview control with the use of limited bandwidth active suspensions is presented. Both a linearized racked vehicle model and a complex nonlinear model based on a commercial multibody dynamic program are used to verify the performance of preview control. The performance of the preview control system is evaluated on the ride quality which is estimated from the acceleration of the driver position. Due to the practical advantages associated with the use of limited bandwidth active control in comparison with full bandwidth systems, the results are considered important to the future development of active tracked vehicle suspensions.

  • PDF

Diagnosis on the Clearance of Rotating Machinery using Correlation Dimension (상관차원을 이용한 회전기계의 간극 진단)

  • Park, Sang-Moon;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.134-139
    • /
    • 2004
  • The correlation dimension of a nonlinear method for the diagnosis on the clearance of rotating machinery is introduced in this paper. The correlation dimension can provide some intrinsic information of an underlying dynamic system by reconstructing measured scalar time series. Vibration signals measured from a rotor with different operating conditions are analyzed using the correlation dimension. The results show that the correlation dimension method can identify the magnitude of the clearance of a rotor and the lubricating condition.

  • PDF

Robust Voltage Controller of Single-Phase Inverter for UPS (무정전전원장치용 단상인버터의 강인한 전압제어기)

  • Ku, Dae-Kwan;Ji, Jun-Keun;Cha, Gueesoo;Moon, Jun-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.298-299
    • /
    • 2010
  • In this paper a robust voltage controller of single-phase inverter for UPS is presented. The voltage controller is designed using ${\mu}-based$ robust control scheme to simultaneously guarantee robust stability and robust tracking performance in presence of filter and load parameter variations. Firstly the robust performance of the resulting controller is theoretically confirmed via ${\mu}-analysis$. Then simulation results for single-phase inverter system with linear and nonlinear loads demonstrate feasibility of the proposed control method providing improved performance - good regulation and fast dynamic response.

  • PDF

Seismic behavior of a new type of seismic energy dissipation shear wall system

  • Lu, Xilin;Wu, Xiaohan;Meng, Liang
    • Structural Engineering and Mechanics
    • /
    • v.5 no.2
    • /
    • pp.167-175
    • /
    • 1997
  • A new seismic energy dissipation shear wall structure is proposed in this paper. The new shear wall is one with purposely built-in vertical slits within the wall panel, and various seismic energy dissipation devices are installed in the vertical slits so that the dynamic characteristics of the structure (for instance, lateral stiffness, ductility and fundamental period) can be controlled. In order to verify this concept, shaking table tests of two 10-story shear wall models were carried out, and the seismic behavior of the two models are studied by analyzing the test data and computing the nonlinear seismic response of the models.

An iterative approach for time-domain flutter analysis of bridges based on restart technique

  • Zhang, Wen-ming;Qian, Kai-rui;Xie, Lian;Ge, Yao-jun
    • Wind and Structures
    • /
    • v.28 no.3
    • /
    • pp.171-180
    • /
    • 2019
  • This paper presents a restart iterative approach for time-domain flutter analysis of long-span bridges using the commercial FE package ANSYS. This approach utilizes the recursive formats of impulse-response-function expressions for bridge's aeroelastic forces. Nonlinear dynamic equilibrium equations are iteratively solved by using the restart technique in ANSYS, which enable the equilibrium state of system to get back to last moment absolutely during iterations. The condition for the onset of flutter instability becomes that, at a certain wind velocity, the amplitude of vibration is invariant with time. A long-span suspension bridge was taken as a numerical example to verify the applicability and accuracy of the proposed method by comparing calculated results with wind tunnel tests. The proposed method enables the bridge designers and engineering practitioners to carry out time-domain flutter analysis of bridges in commercial FE package ANSYS.

Experimental validation of a dynamic analysis and fuzzy logic controller of greenhouse air temperature

  • Hamad, Imen Haj;Chouchaine, Amine;Bouzaouache, Hajer
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.5
    • /
    • pp.175-182
    • /
    • 2021
  • The greenhouse is a complex system. It is subject to multiple input disturbances that are highly dependent on meteorological conditions, which are generally nonlinear and have a great influence on the agricultural production. The objective of this paper is to study the fuzzy logic technique as one of the most efficient technologies to control the greenhouse. The fuzzy logic controller (FLC) was developed to activate the actuator based on a ventilator was installed in an experimental greenhouse to obtain a desired temperature of the microclimate despite the externals disturbances.

Automatic Berthing Finite-time Control Considering Transmission Load Reduction

  • Liu Yang;Im Nam-kyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.168-169
    • /
    • 2022
  • In this study, we investigates the auto-berthing problem for the underactuated surface vessel in the presence of constraints of dynamic uncertainties, finite time, transmission load, and environmental disturbance. A novel control scheme is proposed by fusing the finite time control technology and the event-triggered input algorithm. In the algorithm, differential homeomorphism coordinate the transformation is used to solve the problem of underactuation. Then, we apply the finite time technology and event triggered to save the time of the berthing vessel and relieve transmission burden between the controller and the vessel respectively. Moreover, a radial basis function network is used to approximate unknown nonlinear functions, and minimum learning parameters are introduced to lessen the computational complexity. A sufficient effort has been made to verify the stability of the closed-loop system based on the Lyapunov stability theory. Finally, simulation results display the effectiveness of the proposed scheme.

  • PDF

T-S Fuzzy Modeling for Container Cranes Using a RCGA Technique (RCGA 기법을 이용한 컨테이너 크레인의 T-S 퍼지 모델링)

  • Lee, Yun-Hyung;Yoo, Heui-Han;Jung, Byung-Gun;So, Myung-Ok;Jin, Gang-Gyoo;Oh, Sea-June
    • Journal of Navigation and Port Research
    • /
    • v.31 no.8
    • /
    • pp.697-703
    • /
    • 2007
  • In this paper, we focuses on the development of Takagi-Sugeno (T-S) fuzzy modeling in a nonlinear container crane system. A T-S fuzzy model is characterized by fuzzy "if-then" rules which represent the locally input-output relationship whose consequence part is described by a state space equation as subsystem. The T-S fuzzy model in container cranes first obtains a few number of linear models according to operation conditions and blends these conditions using fuzzy membership functions. Parameters of the membership functions are adjusted by a RCGA to have same dynamic characteristics with nonlinear system of a container crane. Simulations are given to illustrate the performance of T-S fuzzy model.