• 제목/요약/키워드: nonlinear collision analysis

검색결과 48건 처리시간 0.022초

3D/1D 하이브리드 유한요소 모델을 이용한 동력 분산형 차세대 고속열차 전체차량의 충돌 해석 (Collision Analysis of the Next Generation High-speed EMU Using 3D/1D Hybrid FE Model)

  • 김거영;구정서
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.67-76
    • /
    • 2012
  • In this paper, collision analysis of the full rake for the Next Generation High-speed EMU is conducted using a 3D/1D hybrid model, which combines 3-dimensional (3D) front-end structure of finite element model and 1-dimensional (1D) multi-body dynamics model in order to analyze train collision with a standard 3D deformable obstacle. The crush forces, passengers' accelerations and energy absorptions of a full rake train can be easily obtained through a simulation of a 1D dynamics model composed of nonlinear springs, dampers and masses. Also the obtained simulation results are very similar to those of a 3D model if an overriding behavior does not occur during collision. The standard obstacle in TSI regulation has been changed from a rigid body to a deformable body, and therefore 3D collision simulations should be conducted because their simulation results depends on the front-end structure of a train. According to the obstacle collision analysis of this study, the obstacle collides with the driver's upper structure after overriding over the front-end module. The 3D/1D hybrid model is effective to evaluate a main energy-absorbing module that is frequently changed during design process and reduce the need time of the modeling and analysis when compared to a 3D full car body.

묘도-광양간 현수교의 선박충돌 방지공의 위험도 분석 및 안정성 평가 (The Risk Analysis and Stability Estimation of Ship Collision Protection of Myodo-Gangyang Suspension Bridge)

  • 장용채;박기철;김경택
    • 해양환경안전학회지
    • /
    • 제15권2호
    • /
    • pp.127-133
    • /
    • 2009
  • 묘도-광양간 현수교는 광양항에 진입하는 항로에 위치해있으므로 큰 배들에 대하여 충돌 방지공이 필요하다. 본 논문은 선박충돌을 고려하여 위험도 분석과 비선형 수치해석을 실시하였다. 위험도 분석 결과 충돌 방지공 설치 이전에는 연간 파괴확률이 기준치인 0.0001을 초과하여 충돌 방지공이 필요한 것으로 분석되었다. 따라서, 선박의 충돌을 방지하기 위해서 인공섬과 콘리트트 블록으로 만든 방파제 벽을 사용하여 설계하였다. 계획된 충돌 방지공 설치 후 비선형 수치해석 결과 교량에 미치는 하중이 교량의 내하력 이내로 나타나 선박 충돌시에도 교량의 안정성이 확보되는 것으로 나타났다.

  • PDF

Damage analysis of three-leg jacket platform due to ship collision

  • Jeremy Gunawan;Jessica Rikanti Tawekal;Ricky Lukman Tawekal;Eko Charnius Ilman
    • Ocean Systems Engineering
    • /
    • 제13권4호
    • /
    • pp.385-399
    • /
    • 2023
  • A collision between a ship and an offshore platform may result in structural damage and closure; therefore, damage analysis is required to ensure the platform's integrity. This paper presents a damage assessment of a three-legged jacket platform subjected to ship collisions using the industrial finite element program Bentley SACS. This study considers two ships with displacements of 2,000 and 5,000 tons and forward speeds of 2 and 6.17 meters per second. Ship collision loads are applied as a simplified point load on the center of the platform's legs at inclinations of 1/7 and 1/8; diagonal bracing is also included. The jacket platform is modelled as beam elements, with the exception of the impacted jacket members, which are modelled as nonlinear shell elements with elasto-plastic material and constant isotropic hardening to provide realistic dented behavior due to ship collision load. The structural response is investigated, including kinetic energy transfer, stress distribution, and denting damage. The simulation results revealed that the difference in leg inclination has no effect on the level of localized denting damage. However, it was discovered that a leg with a greater inclination (1/8) resists structural displacement more effectively and absorbs less kinetic energy. In this instance, the three-legged platform collapses due to the absorption of 27.30 MJ of energy. These results provide crucial insights for enhancing offshore platform resilience and safety in high-traffic maritime regions, with implications for design and collision mitigation strategies.

차체의 압괴특성에 의한 충돌 후 타고오름 거동에 관한 연구 (Study on a Override Behavior during Train Collision by Crush Characteristic of Train Carbody)

  • 김거영;구정서;박민영
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.604-608
    • /
    • 2010
  • This paper proposed a new 2D multibody dynamic modeling technique to analyze overriding behavior taking place during train collision. This dynamic model is composed of nonlinear spring, damper and mass by considering the deformable characteristics of carbodies as well as energy absorbing structures and components. By solving this dynamic model of rollingstock, collision energy absorption capacity, acceleration of passenger sections, impact forces applied to interconnecting devices, and overriding displacements can be well estimated. For a case study, we choose KHST (Korean High Speed Train), obtained crush characteristic data of each carbody section from 3D finite element analysis, and established a 2D multibody dynamic model. This 2D dynamic model was suggested to describe the collision behavior of 3D Virtual Testing Model.

  • PDF

1차원 충돌 동역학 해석을 이용한 한국형 고속전철의 충돌사고 안전도 평가 (An Evaluation of Crashworthiness on the KHST using 1D Collision Dynamic Analysis)

  • 구정서;조현직
    • 연구논문집
    • /
    • 통권32호
    • /
    • pp.103-111
    • /
    • 2002
  • In this study, the crashworthiness of KHST has been evaluated by analysing a nonlinear spring/bar-damper-mass model of 1-dimensional collision dynamics. The numerical results show that KHST can easily absorb kinetic energy at lower impact force and acceleration in heavy collisions, when compared with KTX. Also, in a Light collision like a traint-to-train accident at lower speed under 8 kph, the carbody and components of KHST can be protected without any damage except the energy absorbing tube to be replaced easily. However, KTX may be much damaged in the light collision because there is no energy absorbing tube. In conclusion, the crashworthy performance of KHST has been much improved than that of KTX, although there are something to be improved for a better crashworthy performance

  • PDF

작은 충돌손상을 가진 보강판의 최종강도 해석 (Ultimate Strength Analysis of Stiffened Plate with Minor Collision Damage)

  • 이탁기;임채환
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.226-229
    • /
    • 2006
  • The safety of on-going ships is one of important concerns in the view of environment and human life. The ship in bad condition is likely to be subjected to accidental loads such as collision. Once she has one or several minor collision damages in the form of circle or ellipse, her ultimate strength under compression or tension load will be reduced. Here, it is important to evaluate the reduction ratio of ultimate strength due to the damage from safety point of view. The problem of strength reduction of a plate with cutout such as opening hole has been treated by many researchers. As a result, a closed-form formula on the reduction of ultimate strength of a plate considering the effect of several forms of cutout was suggested. However, the structure of ships is composed of a plate and a stiffener so-called a stiffened plate, and it is likely to be damaged at a plate and stiffeners together in collision. This paper is to investigate the effect of minor collision damage on ultimate strength of a stiffened plate by using numerical analysis. For this study, the shape of minor collision damage of a stiffened plate was made by using contact algorithm. The deformed shape was used as an initial shape for ultimate stress analysis. Then, a series of nonlinear FE analysis was conducted to investigate the reduction effects of ultimate strength of the stiffened plate. The boundary condition was applied as simply supported at all boundaries, and the tripping of stiffener among failure mode under compression loading was neglected. These results were settled in the form of reduction ratio between ultimate of original intact stiffened plate and that of damaged stiffened plate.

  • PDF

고립파의 충동에 대한 수치해석 (A Numerical Analysis of the Collision of Solitary Waves)

  • 김도영;배광준;정상권
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 추계학술대회 논문집
    • /
    • pp.243-249
    • /
    • 2003
  • The head-on collision of two solitary waves are examined using a boundary element method. Attachment, detachment times and alplitudes and maximum run-up times and amplitudes are computed. Consolidation times show local minimum value if two waves are of equal amplitudes are colliding. Attachment times show local maximum value if the amplitudes of two waves are the same. The detachment time show local maximum if two wves are the same. The detachment amplitude show local minimum values if the amplitude e(=a/h) is greater than 0.3.

  • PDF

해외 충돌안전규정에 따른 유류탱크화차의 비선형충돌해석 연구 (A study on nonlinear crash analysis of railway tankcar according to the overseas crashworthiness regulations)

  • 손승완;정현승;안승호;김진성
    • 한국산학기술학회논문지
    • /
    • 제21권11호
    • /
    • pp.843-850
    • /
    • 2020
  • 본 연구의 목적은 국내 위험물 운송용 탱크화차의 충돌안전설계 가이드라인 제안을 위해 해외 충돌안전 기준에 따른 국내 위험물 운송화차에 대하여 비선형 충돌해석을 하여 위험성을 평가하고, 구조적 취약부를 분석하는데 있다. 유럽의 EN 12663-2에서 규정하는 화차의 완충시험 및 북미 49CFR179에서 규정하는 탱크 펑크시험기준을 분석하였으며, 상용 유한요소 해석 솔버인 LS-DYNA를 이용하여 각각 기준에 따른 비선형 유한요소모델을 모델링하였다. EN 규격의 완충시험 해석결과 충돌속도 6 km/h 이하에서는 소성변형이 발생하지 않을 것으로 예측하였지만, 8 km/h 이상의 충돌속도에서 중앙연결기를 통한 하중 전달으로 차체의 센터실 후방 및 탱크 중앙 지지부에서 소성변형을 확인하였다. 북미 법규의 탱크 펑크시험 해석결과 국내 탱크화차는 두부 충돌모드에서 충돌차량의 운동에너지를 4 % 이상 흡수시 두부의 코너부에서 탱크 외벽의 파괴가 발생하였으며, 측면 충돌모드에서 운동에너지 30 % 이상 흡수시에 충격체가 접촉하는 탱크 외벽의 파괴가 발생하여 내부 적재물의 누출을 예상하였다. 국내 유류 운송용 탱크화차의 해외 충돌안전 기준의 만족을 위해서는 차체 구조보강 설계 및 탱크 방호설계 수준을 향상시킬 필요가 있다.

작은 충돌손상을 가진 보강판의 최종강도 해석 (Ultimate Strength Analysis of Stiffened Plate with Minor Collision Damage)

  • 이탁기;임채환
    • 한국해양공학회지
    • /
    • 제21권4호
    • /
    • pp.34-37
    • /
    • 2007
  • The safety of ships is one of the most important concerns in terms of the environment and human life. A ship in bad condition is likely to be subject to accidents, such as collision and grounding. When a ship has minor collision damages in the form of circle or ellipse, its ultimate strength will be reduced. It is important to evaluate the reduction ratio of a ship's ultimate strength that results from damages. The strength reduction of a plate with a cutout in the form of hole has been treated by many researchers. A closed-form formula for the reduction of ultimate strength of a plate, considering the effect of several forms of cutout, has been suggested. However, the structure of ships is composed of plates and stiffeners so-called stiffened plates and it is likely that plates and stiffeners will be damaged together in collisions. This paper investigates the effect of minor collision damages on the ultimate strength of a stiffened plate by using numerical analysis. For this study, the deformed shape of minor collision damages on a stiffened plate was made by using a contact algorithm and was used as the initial shape for ultimate stress analysis. Then, a series of nonlinear FE analyses was conducted to investigate the reduction effects on the ultimate strength of the stiffened plate. The boundary conditions were simply supported at all boundaries, and the tripping of stiffener was neglected. The results are presented in the form of reduction ratio between the ultimate strength of an original, intact stiffened plate and that of a damaged stiffened plate.

온라인 게임 상의 사용자 인증에 적용 가능한 셀룰러 오토마타 기반 해쉬함수에 대한 충돌쌍 공격 (Collision Attack on Cellular Automata based Hash Function Applicable to Authentication on Online Game)

  • 이창훈;이제상;조성언;김태훈;김수균
    • 한국정보통신학회논문지
    • /
    • 제13권2호
    • /
    • pp.299-308
    • /
    • 2009
  • 본 논문에서는 온라인 게임 상의 사용자 인증에 적용 가능한 이차원 셀룰라 오토마타 기반 해쉬함수에 대한 충돌쌍 공격을 제안한다. 이것은 라운드 함수에서 사용되는 비선형 함수의 비선형 성질을 이용하여 입력된 베시지 차분을 확률 $2^{-28}$으로 상쇄시키는 공격이다. 또한, 최근 발표된 Wang의 분석 기법을 이용하여 확률 1로 만족하는 충돌쌍 공격을 제시한다.